
1

 The Fortran Story Retold
Selected Reprints 1968-2011

Compiled by Loren Meissner, 2016

CONTENTS

Preface
Loren P Meissner 3

Fortran 95 Handbook (1997)
History: Jeanne C Adams, Walter S Brainerd, Jeanne T Martin,
 Brian T Smith, Jerrold L Wagener 7

Betty Holberton Remembers (1974)
ENIAC 1945 Experience: Frances E Holberton 11

Annals of the History of Computing (1984):
Institutionalization of Fortran: Herbert S Bright, William P Heising,
Robert A Hughes 14
Fortran Activities at SHARE 1960-1967: Elliott C Nohr 23

AFIPS National Computer Conference (1987):
History of Fortran Standardization: Martin N Greenfield 27

Communications of the ACM (1968)
GO TO Statement Considered Harmful: Edsger W Dijkstra 42

Frank Engel – Final Report (1977)
ANS X3.9 Fortran Revision [Fortran 77]: Frank S Engel, Jr 46

Numerical Recipes in Fortran 90 (1996):
FOREWORD: Michael Metcalf 57

Journal of Computer Science and Technology (2011)
The Seven Ages of Fortran: Michael Metcalf 67

2

John Backus (1924-2007) led the IBM group that created the first, surprisingly
effective, Fortran compiler. Betty Holberton (1917-2000) helped extend
Fortran programming language design responsibility to other computer manu-
facturers and users. Edsger Dijkstra (1930-2002) had a strong impact on public
understanding of program structure. Jeanne Martin performed a leading role in
the inclusion of International concerns during Fortran language development.

3

Preface

I was introduced to the magic world of digital computers in the fall of 1952,
when my employer sent me for a month to the Institute for Numerical Analysis
at UCLA, where I learned to use the prehistoric IBM Card Programmed Calcu-
lator – and the one-of-a-kind “world’s fastest” SWAC digital computer:

It had 256 words of memory, using Williams [cathode-ray] tubes, with each
word being 37 bits. It had only seven basic operations: add, subtract, and
multiply (single precision and double precision versions); comparison, data
extraction, input, and output. – WIKI

I coded one or two sample programs in SWAC “assembly language,” and I
was granted small amounts of computer time to debug them, under the watchful
eye of my tutor.

A couple of years later I was employed by the manufacturer of CRC-102
computers, magnetic drum machines that had about 10 times the capacity of
SWAC but ran at least 100 times slower. My job was to support the sales force
by coding “typical” business applications for potential purchasers. Another
member of our Sales Support group told us he heard of a project that was under
way, to use computer programs written with mathematical symbols. The project
he mentioned was probably Fortran. As described in the introductory History
chapter of “Fortran 95 Handbook” (excerpted in this collection):

In 1954 a project was begun under the leadership of John Backus at IBM
to develop an “automatic programming” system that would convert pro-
grams written in a mathematical notation to machine instructions for the
IBM 704 computer.… This project produced the first Fortran compiler,
which was delivered to a customer in 1957. It was a great success by any
reasonable criterion. The efficiency of the code generated by the compiler
surprised even some of its authors. A more important achievement, but one
that took longer to realize, was that programmers could express their com-
putations in a much more natural way.

In 1959 I moved to Berkeley where I was employed at the UC Radiation
Laboratory, and I was permitted to spend part time working on my graduate-
level education. My 1965 PhD thesis, involving “Non-Linear Resonance,” was
supported by a Fortran program that simulated the resonance with matrix com-
putations. The matrix sizes that I used were limited by storage capacity.

4

By the early 1960s, many computer vendors had implemented Fortran com-
pilers that included special features not found in the original IBM Fortran. The
American National Standards Institute approved formation of a committee to
develop a Fortran standard. Martin Greenfield, who was closely involved with
the committee from its beginning, recalls (1987; see excerpt) that the first meet-
ing of the committee (later known as ANSI X3J3 and finally as J3) was held in
New York City during August 1962. The Committee’s principal accomplish-
ment over the next four years was to choose among various implementations
and terminology used by compilers from the various vendors. The first ANSI
Fortran standard was adopted in 1966, and became known as Fortran 66.

Popular early Fortran textbooks were written by Daniel McCracken (A Guide
to Fortran Programming, 1961) and by Elliott Organick (A Fortran Primer,
1963; A Fortran IV Primer, 1966). I co-authored revisions of the Organick text-
book in 1979 (Fortran 77) and in 1995 (Fortran 90).

In March 1968, the Association for Computing Machinery published a “Let-
ter to the Editor” from Edsger Dijkstra, under the title “Go To Statement Con-
sidered Harmful.” The import of the article is that the sequence of statements
in a human-originated computer program should bear a predictable relationship
to the sequence of actions actually executed by the computer. Unlike Fortran
66, an ideal programming language should provide “control structures” to per-
mit description of a computation in terms of groups of statements – for repeti-
tion, selection, etc. These groups came to be known as structures.

As we would say nowadays, Dijkstra’s 1968 letter “went viral.” One re-
sponse, which occurred to many Fortran users, was to provide a preprocessor.
A revised language could be defined, with rules similar to those of Fortran 66
but with structures added. A preprocessor (possibly written in Fortran 66) could
read a program written in this “improved” language and produce an “equiva-
lent” Fortran 66 program.

I was interested in this concept. In 1975 I developed one such preprocessor
which I named “B4tran.” Don Reifer compiled a list of 51 Structured Fortran
Preprocessors, and Guy de Balbine compiled a mailing list of persons interested
in “the future of Fortran as it relates to Structured Programming.”

5

In February 1975 my employer, the Radiation Labor-
atory at UC Berkeley, approved my creation of FOR-
WORD Fortran Development Newsletter, to be
mailed to interested individuals on request. The focus
was on Structured Fortran preprocessors in the first
few editions, but later expanded to Fortran language
development. The newsletter was later sponsored by
ACM SIGPLan and was renamed Fortran Forum. In
1999 I received the ACM SIGPLan Distinguished
Service Award “for your significant and lasting con-
tributions to the field of programming languages, es-
pecially your efforts on the Fortran Forum.”

I joined the Fortran Standards Committee (ANSI X3J3) in February 1976. By
this time, X3J3 was eagerly working to finish revising Fortran 66, to produce
Fortran 77. The IF-THEN-ELSE construct is the only Structured Programming
feature listed among “the most significant features introduced” in Fortran 77,
according to Fortran Handbook. Other “significant features” of Fortran 77 were
the CHARACTER data type and many new input/output facilities, such as di-
rect access files and the OPEN statement. Other extensions were deferred to a
future revision.

When Fortran 77 was accepted by ANSI for final processing in October 1977,
officers of X3J3 who had guided the 1977 revision – including Frank Engel
who had served as Chairman since September 1970 – retired from Committee
responsibility.

A new slate of officers was appointed by the parent ANSI X3 body to con-
tinue work toward an anticipated further revision – optimistically designated as
Fortran 8X and finally named Fortran 90. Jeanne Adams was named X3J3
Chairman and I became Secretary.

Michael Metcalf (see Foreword to Numerical Recipes in Fortran 90, in this
collection) describes the agonizing process that finally led to Fortran 90:

The meetings of X3J3 were often full of drama. Most compiler vendors
were represented as a matter of course but, for many, their main objective
appeared to be to maintain the status quo and to ensure that Fortran 90
never saw the light of day. … Most users, on the other hand, were hardly

6

prepared to invest large amounts of their employers’ and their own re-
sources in simply settling for a trivial set of improvements to the existing
standard. However, … underlying differences often surfaced … sometimes
between users … who wanted Fortran to become a truly modern language
and those wanting to maintain indefinite backwards compatibility for their
billions of lines of existing code.

A compromise was finally reached at a meeting in Paris during 1988, when
ultimate responsibility for Fortran standardization was shifted to the Interna-
tional Standards Organization, with close cooperation between its “Working
Group 5” and the American committee X3J3.

X3J3 and WG5, now collaborating closely, often in grueling six-day meet-
ings, spent the next 18 months and two more periods of (positive) public
comment putting the finishing touches to what was now called Fortran 90,
and it was finally adopted, after some cliff-hanging votes, for forwarding
as a U.S. and International standard on April 11, 1991

In 1998, I wrote a guide to the use of features included in Fortran 90 (and a
further minor revision, Fortran 95) for pointers and recursion, especially for
sorting and searching applications. A useful feature had been adopted for
Fortran in the meantime, at my initiative, extending comparison operator names
(for less, greater, equal, etc) from numeric operands to include alphabetic data
– so that a subprogram can be written to sort or search data of either form.

Further extensions and revisions to Standard Fortran were published after my
retirement. Michael Metcalf states (see 2011 reprint included here):

Now modern Fortran is a procedural imperative compiled language with a
syntax well suited to a direct representation of mathematical formulas. In-
dividual procedures may be compiled separately or grouped into modules.
either way allowing the convenient construction of very large programs
and procedure libraries. Procedures communicate via global data areas or
by argument association. The language now contains features for array pro-
cessing. abstract data types, dynamic data structures. object oriented pro-
gramming, and parallel processing.

Fortran may be expected to continue indefinitely as the preferred language
for parallel processing of large arrays – whose present size would once have
been considered astronomical. Loren Meissner, 2016

7

Fortran 95 Handbook
MIT Press, 1997 (Pages 1-4):

Jeanne C Adams, Walter S Brainerd, Jeanne T Martin,
 Brian T Smith, Jerrold L Wagener

INTRODUCTION
For a programming language, Fortran has been around a long time. It was one
of the first widely used “high-level” languages, as well as the first program-
ming language to be standardized. It is still the premier language for scientific
and engineering computing applications.

The purpose of this handbook is to describe the latest version of this lan-
guage, Fortran 95. This chapter sets the stage by providing relevant back-
ground and describing the notation used to specify the syntax of Fortran 95.

1.1 History

1.1.1 Initial Development of Fortran
In 1954 a project was begun under the leadership of John Backus at IBM to
develop an “automatic programming” system that would convert programs
written in a mathematical notation to machine instructions for the IBM 704
computer. Many were skeptical that the project would be successful because, at
the time, computer memories were so small and expensive and execution time
so valuable that it was believed necessary for the compiled program to be almost
as efficient as that produced by a good assembly language programmer.

This project produced the first Fortran compiler, which was delivered to a
customer in 1957. It was a great success by any reasonable criterion. The effi-
ciency of the code generated by the compiler surprised even some of its authors.
A more important achievement, but one that took longer to realize, was that
programmers could express their computations in a much more natural way.
This increased productivity and permitted the programmer to write a program
that could be maintained and enhanced much more easily than an assembly lan-
guage program.

About one year after the introduction of the first Fortran compiler, IBM in-
troduced Fortran II. One of the most important changes in Fortran II was the
addition of subroutines that could be compiled independently. Thus, Fortran

8

changed substantially even during its first year; it has been changing continually
ever since.

1.1.2 Standardization
By the early 1960s, many computer vendors had implemented a Fortran com-
piler. They all included special features not found in the original IBM compiler.
These features usually were included to meet needs and requests of the users
and thus provide an inducement for the customer to buy computer systems from
the vendor providing the best compiler. Because the language was very young,
a special added feature could be tested to see if it was a good long-term addition
to the language. Unfortunately, the profusion of dialects of Fortran prevented
programs written for one computer from being transported to a different com-
puter system.

At about this time, the American Standards Association (ASA), later to be-
come the American National Standards Institute (ANSI), began a project of
standardizing many aspects of data processing. Someone had the daring idea of
standardizing programing languages. A committee, which became X3J3 and is
now J3, was formed to develop a standard for Fortran. This standard was
adopted in 1966; after the adoption of Fortran 77, it became known as Fortran
66 to distinguish the two versions.

The language continued to develop after 1966, along with general knowledge
in the areas of programming, language design, and computer design. Work on
a revision of Fortran 66 was completed in 1977 (hence the name Fortran 77)
and officially published in 1978. The most significant features introduced this
version were the character data type, the IF-THEN-ELSE construct, and many
new input/output facilities, such as direct access files and the OPEN statement.
Except for the character data type, most of these features had been implemented
in many compilers or preprocessors. During this revision, Hollerith data was
removed because the character data type is a far superior facility. Although this
idea of removing features did not seem very controversial when Fortran 77 was
introduced, it proved to be controversial later – so much so that no Fortran 77
features were removed in Fortran 90.

Fortran 77, developed by X3J3, was an ANSI standard – an American Na-
tional Standard. At about this time the International Standards Organization
(ISO) began to mature in the computing language area and adopted Fortran 77

9

as an international standard; the ISO standard was identical to the ANSI stand-
ard, and in fact consisted of one page that referenced the ANSI standard.

As soon as the technical development of Fortran 77 was completed, X3J3 and
its ISO counterpart WG5 (SC22/WG5) teamed up for the next revision, which
was called Fortran 90. Fortran 90 was an ISO standard first, which the US
adopted, word for word, as an ANSI standard. Although X3J3 did the technical
work on Fortran 90, and produced the standard document, the torch had been
passed as to the “owner” of the Fortran standard; that “owner,” for Fortran 90
and forevermore, is ISO.

Fortran 90 was a major advance over Fortran 77. It included: a greatly liber-
alized source form, a complete set of iteration and selection control structures,
enhanced numeric facilities (e.g., the environmental intrinsic functions), a com-
prehensive data-parallel array language, data structures (including dynamic
structures), user-defined types and operators, procedure extensions (e.g., recur-
sion, internal procedures, explicit user-defined generic procedures), module en-
capsulation (with powerful data hiding features), data-type kind parameters
(e.g., to regularize the different “kinds” of reals, provide the corresponding
kinds of complex, accommodate different kinds of character, and to resolve
overloads in a simple way), dynamic objects (e.g., allocatable arrays), and some
I/O extensions (e.g., NAMELIST and non-advancing I/O). The concept of “ob-
solescent” features was introduced, and a handful of Fortran 77 features were
so identified. But removal of significant numbers of archaic features was con-
troversial and so no features were actually removed. A standard-conforming
Fortran 77 program is a standard-conforming Fortran 90 program with the same
interpretation.

Fortran 95, specified by WG5 and produced by X3J3, represents a minor re-
vision to Fortran 90. Most of the changes correct and clarify what was in Fortran
90. However, a few significant features, such as pure functions and the
FORALL construct and statement, were added because they are considered im-
portant contributions from High Performance Fortran. A few (but not all) of the
features designated as obsolescent in Fortran 90 have been removed from
Fortran 95.

10

1.2 Fortran 95 – The Language of Modern Choice
Fortran 95 should be the language of choice for modern applications develop-
ment. This section sketches why, and shows how Fortran 95 can serve this role
while accommodating the 40-year Fortran tradition (and application base).

Fortran 95 is a minor extension of Fortran 90 – the changes from Fortran 90
are limited primarily to correcting a few errors and inconsistencies in Fortran
90 and strengthening of data-parallel array operations. Fortran 95 therefore sup-
ports (most of) Fortran 77 and the vast libraries of such “legacy Fortran code.”

Fortran is famous for its efficiency and prowess for numerical computation.
These strengths form two of the basic principles guiding Fortran 95. In addition,
inherited from Fortran 90, are the principles of high performance data-parallel
array operations and efficient data abstraction. These four fundamental princi-
ples, the way they are implemented, and their supporting cast of modern fea-
tures, make Fortran 95 a clean, pleasant language to use for applications requir-
ing either high performance or modern programming techniques, or both.

The Fortran 95 data-parallel array operations constitute a valuable program-
ming paradigm for scalable parallel architectures, especially for array-oriented
applications such as many scientific and engineering models.

Dynamically allocatable arrays alleviate many of the deficiencies of those
older versions of Fortran with static memory allocation. Pointers provide effi-
cient subobject aliases as well as facilitate the use of dynamic structures such
as linked lists and trees. Optimization is preserved in the face of pointers by
requiring a target to be designated as such.

Much modern programming involves the definition of arbitrary data types
(classes), arbitrary operations on these types, and appropriate data hiding. These
capabilities are provided cleanly and efficiently in Fortran 95 by derived data
types, flexible procedure overloading and operator definition, and powerful
packaging facilities (modules). These provide most object-oriented program-
ming capabilities, except for automatic operator inheritance, in a user-friendly
manner. These and more are described in detail in subsequent chapters.

With support of high performance computing, modern programming tech-
niques, and legacy code, Fortran 95 represents an unbeatable combination for
application development at the close of the 20th century with its rapidly chang-
ing computer technology.

11

Date: December 18 1974

To: ANSC X3J3 Members
From: F.E. Holberton

TECH A265
Subject: More on the SAVE Statement

Because I believe the most fundamental fault in the X3.9-1966
Fortran standard is the inability to retain local variables and arrays
in subprograms of a standard conforming program, I will mount the
soap box once more to express my concern for the future of the
Fortran standard.

As one individual who has participated in many areas of the com-
puter field including design of hardware, software and programming
languages since its beginning (starting as a programmer on the first
electronic computer ENIAC in 1945), I have endeavored to make
computers more accessible to a potentially wider user community.
To this end, I hope to help make this Fortran standard a language for
writing more portable programs and to bring the standard closer to
the needs of the user community.

To recite ancient history, in 1954, (twenty years ago) IBM invited
interested computer people to gather in many different cities to re-
view and participate in discussions related to the preliminary speci-
fications for the IBM Mathematical FORmula TRANslating Sys-
tem, Fortran, at which time many of us old timers put in our two-
cents worth. In 1957, when the compiler (Fortran I) for the IBM 704
was made available for field test, the Applied Mathematics Labora-
tory at the David Taylor Model Basin (NAVY), where I was then
employed, volunteered to be a guinea pig for trial of the system.

With Fortran I for the IBM 704 and A-O (MATHMATIC) for the
UNIVAC I in field test at the laboratory, we found no takers among

12

the professional programmers, because they considered this new ap-
proach to “coding” might cost them their future livelihood, so that
we were obliged to set up training courses and instigate the first
“open shop operations” for the engineers in the other laboratories at
this site to try out the systems. This project proved to be a great suc-
cess and more problems were solved in a shorter time than using
mathematicians, who lacked the knowledge of the engineering sub-
ject matter, to write programs in assembly code.

The arrival of Fortran II, with the introduction of subprograms,
opened up Fortran to a wider class of potential problem solutions.
Many programs, particularly the nuclear reactor problems, were too
large to be contained in a single memory load of 4096 locations, so
that individually tailored overlay techniques were employed so that
more storage could be utilized by the data. To make this technique
work, it was necessary to map into blank common all of the values
that must be saved between the overlay of subprograms, because the
local storage for each subprogram resided with that subprogram.

So, for programs that did not exceed a single memory load, all
local values were retained, while those programs which were too
large resorted to overlay techniques, which were called into action
within the program logic.

By 1963, computers were being used in a multi-processing envi-
ronment and many implementors had a Fortran-like language for use
on their systems. While most multi-processing environments saved
the last-used-state of a subprogram and data in an automatic overlay
system (save and restore), at least one implementor opted to perform
automatic overlay of subprograms by loading the initial-state with-
out preserving the last-used-state and therefore all local values were
lost. When Fortran came up for standardization in 1963, the specifi-
cations were established primarily by the implementors and the con-
cept of “undefinition” was fabricated so that these two worlds could
coexist and their products be “standard”. Therefore, today with
larger and less expensive memories than in 1957 all users who wish
to write portable programs are forced to consider their subprograms
as some kind of appendage that can come and go at someone else’s

13

will; and to be on the safe side he has to consider the worst. Even if
the program is a small one with subprograms that can be tucked in
a tiny corner of the memory, there is no relief.

If the presence of a SAVE statement in a subprogram just caused
the subprogram and its storage to stay around and not disappear, that
is one implementation; or it could be automatically saved and re-
turned, that is another solution. To reject the SAVE statement at any
level, because of the lack of some sophisticated technique, is totally
unacceptable. If users were forced to wait on super techniques, there
might never have been a Fortran I. Every year, colleges produce
computer science graduates eager for a challenge. When there is a
need, some solution is usually found.

It is questionable whether 25 people on a standardization commit-
tee can force the rest of the world to change. The market place calls
the shots. However, in 1976, ten years after the first Fortran stand-
ard, when the SAVE statement is part of the Fortran language, a
large segment of the Fortran community will realize for the first time
that the “portable” programs that worked on most systems weren’t
really “standard”. At this time, hopefully, they won’ t object to in-
serting the SAVE statement in their programs to rectify a discrep-
ancy that existed in the standard, but not in most -implementations.

14

Annals of the History of Computing
Vol 6, No 1, Jan 1984

Special Issue: Fortran’s Twenty-Fifth Anniversary

Institutionalization of Fortran
(Pages 28-32)

Jeanne Adams, Chair

CONTENTS
Early Fortran User Experience: Herbert S Bright

The Emergence of Fortran IV from Fortran II: William P Heising
Early Fortran at Livermore: Robert A Hughes

Early Fortran User Experience
I want to mention a little-known aspect of how Westinghouse-Bettis, a nuclear-
power-reactor development laboratory, together with a lot of other groups who
ultimately became known as “the nuclear-codes crowd,” got interested in large-
scale computing in the middle 1950s.

Systems of elliptic partial differential equations are used to describe fixed-
geometry nuclear-power reactors for criticality calculations. One group, reputed
to be the world’s “outstanding authorities,” investigated the use of digital com-
puters to perform such calculations by relaxation or successive-approximation
techniques. They concluded on theoretical grounds that the rate of approach to
a correct solution, which must decrease with problem size, went to zero for
numerical models of order 600. Using what was then the world’s most powerful
computer, the NORC (Naval Ordnance Research Calculator), they performed
experiments that seemed to support that conclusion.

Problems of the order 2500 were already in use for two-dimensional reactor
design work, represented by passive electric-network models. Using a special-
purpose analog simulator, one such solution took about six weeks of day-and-
night chain-gang-style labor for several skilled technicians. The 600-limit
“proof” had pretty well convinced the reactor designers that digital computers
weren’t going to help them.

A team of mathematicians, headed by Elizabeth Cuthill at the U.S. Navy’s
David Taylor Model Basin near Washington, concluded that the proof applied

15

to the mathematical technique instead of to the problem. Using a new technique,
they wrote a program to solve problems up to Order 2500.

The machine they had available was a UNIVAC I computer that had about as
much memory as a modern pocket-size key-driven calculator and executed
roughly 1000 instructions per second. The program took between 30 and 40
hours of machine time per solution, but it ran! Results were correct and usable.
It was used to design several reactors.

Although Betty would never have named anything after herself, her 2500-
point program became known as the Cuthill Code – now a household word in
the nuclear-codes community. Without such a successful demonstration that the
world’s outstanding authorities could be wrong, there would have been no early
large-scale nuclear codes. The demand for more and more powerful computers
would not have gained a major push.

When I recently discussed this development with a distinguished computer
historian, I was startled to learn that few people in other fields of applied math-
ematics have even heard of the work. As of today, he will no longer be able to
make that statement.

Criticality calculations gave information for a particular design and a partic-
ular set of operating conditions about the extent to which the chain reaction was
supercritical. These calculations took a lot of machine time, and memory space
was extremely expensive, so they were hand-polished to maximum efficiency
in time and space. In 1957 one- and two-dimensional versions were running on
an IBM 704.

To simulate the reactor core through its working lifetime, it was necessary to
perform a depletion or burnout calculation using the output of a criticality cal-
culation to determine at each point inside the core what neutron bombardment
had done to the core materials. That turned out to be an enormously complex
problem. For a 250-point one-dimensional solution that was running at that
time, for example, the depletion calculation included 30,000 lines of assembler
code. The core designers were planning two- and three-dimensional codes.

Understanding of the behavior of the materials under nuclear bombardment
grew rapidly. This further complicated the coding problem, which, of course,
was accompanied by a huge maintenance problem. The question arose: Could
we do that much coding and maintenance?

16

As if that weren’t enough pessimism, the people in the Mathematics Depart-
ment at Bettis Laboratory were pessimistic about the still-fetal FORTRAN. We
had expected that Fortran, presuming it would be available some day, could
never construct code that was really efficient, either in time or in space. Our
intention to take a look at Fortran was accompanied by the assumption that it
was going to produce rotten code – as a matter of fact, on occasion it did. Some
of the Fortran object code was amazingly efficient, but we hadn’t yet learned
how to predict or control that aspect of compiling.

Fortunately, the depletion calculations only got executed once per time step.
Unlike the criticality calculations, although they took a lot of code, they didn’t
have to be efficient; they only had to be correct. To our delight, Fortran pro-
duced correct code, and the amount of labor required to debug and maintain the
code – and even to change it substantively – was remarkably small.

In the first issue of the Annals
[Volume 1 Number 1 (July 1979),
pp. 72-74], I described a Fortran
test problem that was part of a de-
pletion calculation. If the solution
was correct – even if its resulting
code was inefficient – it would be
important; this was not just an ex-
ercise.

The expression shown for
gamma in Figure 1 was compu-

ted by incrementing several variables to generate a table for what was known
as “gamma of tau for the inhour formula.” The independent variable was the
amount of time each material was in the reactor core under neutron bombard-
ment. The result was used to calculate the behavior of each point in a geometric
array of material as a function of time. The story in the Annals gave some op-
erating details of our first test of Fortran using that calculation.

Late one Friday afternoon – the Friday before a SHARE meeting – the Bettis
mailman showed up with an unmarked box of cards with no documentation.
Lou Ondis, Ollie Swift, and I were standing in a hallway when the mystery

17

package came along. Unfortunately Jim Callaghan’s carpool had already re-
moved him from the scene. Ollie had written a report specifying the “gamma of
tau” calculation, on the basis of which Jim had written a Fortran test program.
Jim had only this shiny gray thing marked “Fortran Programmer’s Manual,” a
sort of fat brochure that in retrospect was incredibly accurate in comparison
with typical modern documentation. Jim had spent about one afternoon writing
this program. To give you a comparison with our previous methods, we later
estimated it would have taken about two weeks to have written this amount of
code in assembly language and another week or two to debug it.

Lou suspected that the anonymous box of cards might be the overdue Fortran
compiler. Ollie suggested a way to find out. Hang a full set of 10 blank tapes
on the 704 and act as though we believed this was, in fact, Fortran. Load the
compiler and the source program – it did not require input data, because one set
of test values was built in – and attempt to compile, load, and execute.

Lou got through those processes successfully. After a few minutes of machine
activity, we wound up with a single, printed, English-language diagnostic of
incredible specificity. Figure 2 gives the “diagnostic program results.”

We looked at the card. The diagnostic was right! Lou reproduced the card
with a comma stuck in the right place. We recompiled. After a little whiff of
computing, there came something like 28 pages of output (see Figure 3).

There were several errors in our use of Roy Nutt’s FORMAT phase, but the
results rang like old crystal. We random-spotchecked about 15 values. I was
convinced that all of the output was essentially good to the six decimal digits
printed. We remarked in the Annals (our story had first been published in 1971)

18

that a couple of hundred compiler fixes down the road, it was hard to believe it
had happened. I still feel that way.

John Backus has commented that although his Fortran group intended to dis-
tribute the first Fortran compiler in binary-card form, only one or two decks
actually got punched. They used up several reproducing card punches per bi-
nary deck produced; the machinery couldn’t stand the mechanical load. The fact
that the newborn Fortran got to us on the last working day before a SHARE
meeting – and that Jim had produced a workable test program that was ready to
try the compiler – represented incredible, blind good luck.

The Emergence of Fortran IV from Fortran II
My subject is slightly broader than the emergence of 704 Fortran II to 7094
Fortran IV. I’m going to talk about the evolution of 704 Fortran during the pe-
riod from 1957 to 1964 from my personal viewpoint. During this period I had
various responsibilities in connection with Fortran.

My first responsibility was to assist on the transfer of the Fortran project from
the Programming Research Group under John Backus to the Applied Program-
ming Department. Later I was manager of 7094 programming, and still later I
was responsible for coordinating Fortran processor implementations within
IBM. In 1957 the status of Fortran was that the initial compilers were completed
by the Programming Research Group, which had embarked on a significant im-
provement called Fortran II that has enabled users to break up the program – a
large application – into independent compilations. This was an important ad-
vance to which attention should called. In fact, it was the genesis of many of
the linking loaders we have today. The idea of having an application program
written not as the output of a single compilation but of many was new. It greatly
expanded the possible use of Fortran because it meant that if some small part
of the application required assembly-language programming it could be done
without writing a separate routine or function in the Fortran language.

 When I became involved with the Applied Programming Department,
there were approximately 10 people to take over the work of Backus’s Program-
ming Research Group. Most of these people were capable but junior in experi-
ence in programming. Our first responsibility was to learn the structure of the
compiler. Backus’s group had an informal management style, and there were
some things that bothered us a little. For example, the different sections were

19

written in two different assembly languages – certain sections in one and certain
in the other. When we finally got Section 2, the Programming Research Group
had lost the symbolic code so it came over to us in absolute.

The most important initial project undertaken in Applied Programming was
to get a version ready for the IBM 709, which had been announced in January
1957 and was first shipped late in 1958. Because the group was new, a mini-
mum number of changes were made in order to make Fortran operative on the
709. This machine had different input/output, and the configuration we chose
to support was 8K main memory (instead of 4K) with a drum. The 8K main
storage meant we had to be a little bit careful in shoehorning everything into
storage.

The original plan for the 709 programming support was to have a SHARE
Operating System (SOS) designed by the most experienced users in SHARE. It
was basically a design to surround the assembly language program with some
nice debugging tools. One group in programming would work on SOS, and the
Fortran work would go on in parallel. The initial thinking was that we would
integrate Fortran within SOS. We ran into schedule difficulties. There were
some technical difficulties, too, in that the Fortran II approach of modular pro-
grams was not well matched with the format of the deck of SOS. There was
some allowance to match the two, but I don’t think all the technical aspects had
been worked through. In any case, we weren’t able to integrate. The first 709
Fortran came out as a stand-alone system, not within SOS, and used a loader
very much like the original linking loader of the Fortran system on the 704.

The 704 and 709 Fortrans were successful quite early – especially Fortran II
– but the penetration on users, so to speak, was rather uneven. The most expe-
rienced users (who dated from the days of the IBM 701) tended to retain assem-
bly language programming, and the newest and least sophisticated newcomers
to computing were most frequently Fortran users. Nonetheless, the technical
basis of Fortran was sufficiently sound that usage was like a snowball going
downhill.

Soon there were hundreds of customers making hundreds of suggestions for
improvements. They would find bugs and send them in – not only error reports,
but in many cases the fixes would come in along with the reports. Many sug-
gestions applied to such matters as improvement of diagnostics – little practical

20

things – and it was as if there were hundreds of people working on improving
Fortran. The suggestions just poured in, and we put them in as fast as we could.

A significant event occurred in 1958. The German Applied Mathematics So-
ciety (GAMM) proposed to the Association for Computing Machinery (ACM)
that an international algorithmic language be developed, and SHARE requested
that Backus be its representative. He participated in that effort and gave a report
in the fall of 1958. As a result of this report, SHARE was very enthusiastic
about the possible future of ALGOL. In fact, SHARE went so far as to pass a
resolution requesting IBM to implement ALGOL.

During a period of about a year and a half when we were making minimal
improvements on Fortran, we were also working up an ALGOL experimental
compiler. After about two years, IBM and SHARE jointly realized that ALGOL
was not going to supersede Fortran, and that we should look toward longer
range improvements in Fortran. We decided to clean up Fortran II; this was the
basis of the transition from Fortran II to Fortran IV. The cleanup consisted of a
lot of details such as getting rid of machine dependent irregularities of the lan-
guage, and introducing and straightening the treatment of COMMON and
EQUIVALENCE so that customers didn’t have to have special courses on how
to write EQUIVALENCE statements. Many changes were planned.

One important limiting factor, of course, was that we wanted customers who
had Fortran II programs to be able to preserve them. SHARE planned and wrote
a translator written in Fortran to translate from Fortran II to Fortran IV. Don
Moore, Jay Allan, and Paul Rogoway wrote that program, [J J Allen, D P
Moore, and H P Rogoway, “SHARE Internal Fortran Translator (SIFT),” Data-
mation 9, 3 (March 1963), 43-46] and it was used successfully on the conver-
sion of Fortran II to IV.

Early Fortran at Livermore
The Lawrence Livermore National Laboratory (LLNL), located about 40 miles
due east of San Francisco, is a facility for nuclear research and weapons design.
Being only slightly younger than the modern digital computer, LLNL’s history
is closely tied to that of the computer industry in that it is:

1. A leader in the application of computers (and Fortran) to the solution of
large-scale scientific problems and to major systems software implementations.

2. Staffed by experts in both software and hardware design.

21

3. One of the largest concentrations of computing power in the world, hous-
ing both the Octopus Computer Network and the Magnetic Fusion and Energy
Computer Center. The latter is a national network.

LLNL has a user community of 8000 employees, of whom 4000 are scientists
or engineers. It has 2000 time-sharing terminals, and works on scientific appli-
cations in mathematical physics and biomedical research. Its system software
consists of operating systems, language processors, and computer graphics.

Computing at LLNL began with the first commercially available machines,
the UNIVAC I in 1952 and its successors, the IBM CPC [Card-Programmed
Calculator], an IBM 701 in 1954, and two IBM 650s. There were some early
compiler efforts. Kl and K2 were experimental algebraic compilers for the IBM
701 based on flowchart algorithms. K3 was an IBM 704 compiler designed to
maintain the integrity of conventional mathematical notation. It required three
cards per statement, the first and third being used for exponents and subscripts.
was named K3 for “Kent Ellsworth and the world’s third compiler.” K3 had a
successful first run. It then became the world’s second Spruce Goose in the
wake of Fortran’s growing popularity.

Interest in Fortran began in 1955, when IBM announced plans for an auto-
matic coding system for the IBM 704 (LLNL eventually had four 704s). In
those early days, LLNL was one of the few organizations that used computers
and was aware of the Fortran project. Sidney Fernbach, head of the Computa-
tion Department, spearheaded an effort to gain firsthand knowledge of Fortran’s
implementation and potential as a programming aid. I was sent to New York in
the summer of 1956 to work with the Fortran development team, led by Backus.

From the advent of Fortran in early 1957, an extended Fortran called LRL-
TRAN became the most used programming language at LLNL. It was typically
used to compile compilers (Fortran-Fortran) and to maintain up-to-date soft-
ware for succeeding generations of LLNL’s large mainframes.

The first Fortran-Fortran was that of the IBM 709 (LLNL had two in 1963) –
the first LRLTRAN compiler – with no extensions to the language. The first
two extensions appeared with the Livermore Automatic Research Computer
(LARC) (1960), a decimal machine contemporary with the IBM 7030 (Stretch).
The LARC’s Fortran compiler came from the new Computer Science Corpora-
tion and allowed a parameter statement with symbolic names for declarative

22

constants, and alphanumeric and numeric statement labels. Early Fortrans
lacked mixed mode arithmetic or byte declarations; the latter shortcoming was
decried by system programmers who felt “betrayed” by the language designers.
IF THEN ELSE was added in 1977. Most of LRLTRAN extensions are now
“standard” under ANSI Fortran 77 specifications. Thus, after years of new user
comments such as, “That’s not Fortran,” LRLTRAN is again Fortran (well, al-
most).

23

Annals of the History of Computing
Vol 6, No 1, Jan 1984

Special Issue: Fortran’s Twenty-Fifth Anniversary

Meetings in Retrospect

Fortran Activities at SHARE Meeting
Pages 65-69

Elliott C Nohr

The Fortran exhibit displayed at NCC ’82 and the IBM Santa Teresa Labor-
atory was subsequently shipped to the SHARE 59 meeting in New Orleans,
August 22-27, 1982.
At a special Fortran session chaired by John Ehrman, Elliott Nohr of IBM
[General Products Div., San Jose] spoke about the early days of Fortran and
how SHARE and IBM worked together to make it more widely used.
We are presenting an edited version of Nohr’s paper with SHARE’s permis-
sion.

…

SHARE XIV was held in Los Angeles in February 1960; Donn Parker was
chairman of the Fortran committee. The topic being discussed then was whether
assembly-language instructions should be permitted in the middle of Fortran
programs. It was argued that this would improve the efficiency, and it was also
argued that one would lose all compatibility. After a prolonged floor argument,
SHARE members agreed that symbolic instructions should not be added. It is
true that IBM had something called Fortran III, which was really Fortran II with
symbolic instructions added, that had been distributed to a very few people. By
this time, Fortran had a large number of active users.

In August 1960, George Mealy (RS-Rand) wrote to the Fortran chairman on
the subject of “Whither Fortran,” Some quotes from this letter are:

The committee has proceeded on a course of jacking Fortran up inch by
inch; a bit more leverage has been required at each step.

24

We are rapidly reaching the point at which only very minor improvements
can be made within the existing framework. How do the IBM people feel
about spending their lives patching things up rather than being free to do
more creative work? In short, I think we should stop trying to kid Fortran
into working better and completely rewrite it.

SHARE XV was held in Pittsburgh in September 1960, and the committee
met in closed session starting on Sunday afternoon with 26 of the 28 members
present. On that day we were discussing such things as the G-type format by
Jim Porter (General Electric); the debug package by Bill Hefner (General Elec-
tric), Fred Scaife (Martin Aircraft), and Tom Martin (Westinghouse Electric);
the WD buffered I/O routine; the DE-FAP routine; and the General Electric 709
Fortran format generator by Dorothea Clark. It was suggested that all of these
should be distributed through the SHARE secretary for field tests. SHARE de-
cided to appoint a “czar” to oversee the testing of all of the customer-developed
extensions.

After SHARE XV, Bruce Rosenblatt was appointed chairman of the group.
The Fortran group was invited back to New York in January 1961 to listen to a
report by the IBM Fortran planning group. The ideas generated at this meeting
resulted in a preliminary specification of Fortran IV.

At SHARE XVI, held in San Francisco in March 1961, the preliminary spec-
ifications were submitted and discussed. This was the beginning of 7090
Fortran IV. One of the differences from the old Fortran I/II and Fortran IV was
that all of the arrays were stored backward in Fortran I/II. That is, they started
with the highest address and worked back toward the beginning, while the pro-
grams started with the lowest address and worked toward the end. If the two
ever met, you had some problems. The backward arrays also caused problems
when working with other subroutines in assembler language; you had to keep
remembering that the arrays were actually in reverse order. The new Fortran IV
storage was in the forward direction. The EQUIVALENCE statements were not
allowed to use multiple subscripts; therefore, you had to figure out which ele-
ment of the array you wanted. If you wanted a 10 × 10 array, you could not say
the fifth element of the third row; you had to indicate it as if it were a scalar
variable and count which number it was; this led to many errors. Also, at this
time, there were discussions of the label COMMON, adjustable dimensions,
full-word integer arithmetic, and logical IFs as part of the new Fortran IV.

25

In 1961, SHARE urged IBM to release its new language called COBOL 61.
To digress for a minute, IBM had a commercial language available called Com-
mercial Translator (COMTRAN) that was one of the languages considered
when COBOL was developed, but customers were requesting IBM to provide
a COBOL.

Jim Porter (General Electric) had agreed at an earlier date to work on a format
generator because the Fortran FORMAT statement only had an nH character to
put in character data. This was the source of many errors. General Electric
worked on a format generator, but IBM decided not to include it in the IBM
system,

During 1961, some SHARE members felt that they were having some diffi-
culty with IBM. A proposal was made that:

The SHARE/Fortran Standards and Evaluation subcommittee wishes to re-
port to the executive board that its ability to communicate with IBM ap-
plied programming is rapidly deteriorating. This is essentially true in the
area of language modification. Decisions in this area are filtered through a
group that placed undue emphasis upon compatibility with systems for
non-SHARE machines and is consequently unsympathetic to our needs.

…
At that meeting it was obvious that the new Fortran IV that was being dis-

cussed was going to be significantly different from Fortran II and that a program
would be needed to convert Fortran II to Fortran IV.

It was decided that a new committee would be formed to take all current
practices and convert them to the new Fortran IV. This project was called the
SHARE Internal Fortran Translator (SIFT). The members of the committee
were Jay Allen of IBM, Don Moore of UCLA, and Paul Rogoway of Aerospace
Corporation. The deadline for the conversion project was January 1962, but the
project took until September 1962, at which time IBM accepted the conversion
program SIFT for maintenance and distribution.

In 1962, Fred Scaife (Martin Aircraft) became the chairman of the Fortran
committee. In 1963, the Fortran committee set up an advanced-language plan-
ning committee to look at an extended Fortran IV. This committee was known
as the 3×3 committee. It was composed of three SHARE members and three
IBM members. The SHARE members were Bruce Rosenblatt (Standard Oil),

26

Hans Berg (Lockheed Aircraft), and Jim Cox (Union Carbide-Oak Ridge). The
three IBM members were George Radin, Bernice Weitzenhoffer, and C. W.
Medlock. The committee soon realized that in order to make the extensions
needed, they could not keep compatibility with Fortran. The language that re-
sulted was PL/1.

By this time, the IBM 360 system had been announced, and SHARE members
were concerned about getting their programs to run on the 360; it was a 32-bit
machine, and they had a 36-bit machine. In particular, they were concerned with
the accuracy of their floating-point numbers and how to handle the Hollerith
constants that were then six characters per word and now would be four char-
acters per word. (We also were going from a 6-bit character to an 8-bit charac-
ter.)

One last item worth mentioning is character variable type. This was intro-
duced in February 1967 at SHARE XXX. As most of you are aware, IBM did
listen and implement it, even though we had to wait 14 years.

27

Library of Association for Computing Machinery
From Proceedings, AFIPS National Computer Conference

Houston, June 1982 (Pages 817-824)

History of Fortran Standardization
Martin N. Greenfield

ABSTRACT
The history of Fortran standardization, ranging from the original efforts in
the early 60s up to the present, is presented. Some of the precedent-setting
development during the initial cycle in handling problems common to all lan-
guage standardization is discussed. The background in introducing some of
the features in Fortran 77 is covered. The nature and reasoning behind the
current activity are described.

There is an interesting and appropriate introduction in my daughter’s college
text on Fortran. It reads, “After you have learned some of the language, you will
show off your sophistication by knocking its lack of elegance. Everybody does.
After you learn a little bit more, you will appreciate that it is the way to really
get your work done.”

Fortran has for most of its life been the blue-collar worker of the program-
ming language set. What it lacked in savoir-faire and style, it returned in cost
effectiveness. Those working with Fortran pioneered the way for the acceptance
of higher-level languages and their standardization. Those who have influenced
its development were continually aware of the underlying fact that the language,
first and foremost, must remain an efficient tool for producing results.

Fortran standardization dates back to early 1960. The language had just been
selected by industry over ALGOL as the language for scientific and engineering
work. The major vendors recognized the requirement to provide Fortran com-
pilers in order to compete with IBM. The general strategy was to provide a
compiler with the functionality of the 704/709 Fortran and to add features as a
competitive inducement. The impact of these added features was two-edged.
Although they contributed to the development of the language, they threatened
to splinter it into a myriad of uncontrolled dialects. Adding to the problem, a
rigorous definition of the language did not exist, even within IBM.

https://dl.acm.org/purchase.cfm?id=1500877&CFID=781185346&CFTOKEN=47755905

28

Fortunately, at that time ASA [American Standards Association] (subse-
quently to become ANSI [American National Standards Institute]) and BEMA
[Business Equipment Manufacturers’ Association] (subsequently, CBEMA
[Computer and Business Equipment Manufacturers’ Association]) undertook
sponsorship of a massive standardization effort covering a broad variety of data
processing areas. Someone had the brave idea of including languages. The ASA
X3.4 committee conducted a survey of existing programming languages.
Fortran, COBOL, and ALGOL were selected as the candidates for standardiza-
tion. X3.4 at their May 1962 meeting established the X3.4.3 committee and
directed it to standardize the Fortran language.

INITIAL STANDARDIZATION (1962-1966)
Bill Heising, of IBM, was appointed as the initial chairman of X3.4.3. Bill sent
invitations to potentially interested groups to attend a formation meeting. Ac-
companying the invitations was a document written by Bill together with Dick
Ridgeway that was proposed as the starting draft for the standardization effort.
This Heising-Ridgeway Fortran was based upon the forthcoming [IBM] Fortran
IV.

The initial meeting of X3.4.3 was held at the BEMA Headquarters in New
York City on August 14, 1962. This makes 1982 both the twenty-fifth anniver-
sary of Fortran [see Annals of the History of Computing, Vol 6 No 1, January
1984: Special Issue – Fortran’s Twenty-Fifth Anniversary: Pioneer Day, Hou-
ston, 9 Jun 1982] and the twentieth anniversary of the start of its standardiza-
tion. At this August 1962 meeting, there was a consensus to undertake the stand-
ardization work. The scope and criteria of the effort were established.

X3.4.3 assumed the role of parent and policy maker and delegated all the
chores below that to two working subcommittees. As such, X3.4.3 met only
about twice a year. X3.4.3 originally had about two dozen regular members. All
the major hardware vendors were represented. A number of user groups
(SHARE, Honeywell Users Association, USE, VIM, IBM 1620 Users, CO-OP)
participated. Some software houses (CSC [Computer Sciences Corporation],
CUC [Computer Usage Corporation]) and universities (Wisconsin, Penn State,
UCSD [University of California, San Diego]) had members.

29

The parent X3.4.3 did thrash out some very controversial issues. One of recall
concerned a proposal from those working with the then new character-address-
able hardware. They could save much space by not allocating the same space
to integer and logical data as was allocated to reals. In fact, they preferred not
to have any fixed storage relationship between the data types. Logicals could
be packed into one byte or less. Double precisions could occupy just two or
three more bytes than reals. Their arguments centered about the concept that a
language standard should not be as hardware biased as the word-storage-unit
relationship implies. After some impassioned discussions the heavy depend-
ence of Fortran on storage association for efficiency and the dominance of word
addressable processors won.

Most of the actual standardization work was handled by the two subcommit-
tees. X3.4.3-IV was responsible for the standardization of the language based
on Fortran IV, while X3.4.3-II was to do the same for Fortran II.

The subcommittees were small compared to the size of groups currently de-
veloping draft standards. It was fortunate, because it provided an efficient work-
ing arrangement and uninterrupted participation. Little time was lost in having
to bring new members up to date. The regular members of X3.4.3-IV were

Martin N. Greenfield, Honeywell, chairman
Richard K. Ridgeway, IBM, editor
Caral Sampson (Giammo), Philco, secretary
Tom Martin, SHARE and Westinghouse
Geraldine Zimmerman (Bowen), UNIVAC
Lou Gatt, CSC
Ken Tiede, CDC
Carl Bailey, CO-OP and Sandia
Bob Mitchell, CO-OP and UCSD

Along with the X3.4.3 chairmanship responsibilities, Bill Heising was a very
active participant in the effort of the X3.4.3-IV subcommittee. Others from
X3.4.3 participated from time to time, but the bulk of the effort was done by the
group above.

The work proceeded during the following two years. Although some meet-
ings were hosted at the sites of the different members throughout the country,

30

the bulk of the sessions were either at BEMA headquarters or at the IBM pro-
gram development center in the Time-Life building, both in New York City.

The initial Fortran IV compilers were all under development while the work
of X3.4.3-IV was in progress. The members of X3.4.3-IV were all either re-
sponsible or could direct changes in their language specifications for these im-
plementations. It was a unique situation, where language changes adopted by
the subcommittee were incorporated into the compilers almost immediately. I
have always felt that the actual standardization of Fortran stemmed from the
discussions, understandings, and agreements of X3.4.3-IV rather than from for-
mal text that followed some years later.

The undocumented agreement within X3.4.3-IV was that the standard would
not incorporate any feature that was not planned for all the implementations.
Since the starting point for all of our language specs was the IBM-proposed
language, it followed that the draft most closely represented the IBM imple-
mentation. It was by no means a slavish [unquestioning] copy. For one thing,
there were no rigorous specifications within IBM of much of Fortran IV that
could have been copied. This was particularly true in the input-output area.
There were some features that IBM meant to carry into Fortran IV from their
Fortran II implementations in order to protect their users’ investment.

Unfortunately, some of their Fortran II implementations contained some ob-
jectionable shortcuts. For example, a constant could precede a variable and im-
ply a multiplication operator (5L meant 5 * L). To their credit, there was never
much of a hassle with those from IBM in deleting features that were objection-
able carryovers from existing implementations of Fortran II. I believe they were
sincerely motivated in working toward the best long-term interests of the lan-
guage. Another change of note was that the DATA statement syntax was altered
from the way IBM was implementing it. It was originally specified with paren-
theses rather than slashes as the delimiter for the list of constants.

Having no precedents, X3.4.3-IV had to address numerous problems com-
mon to all language standardization. Much of this we take for granted now, but
there was nothing to turn to at the time. There were discussions as to whether
there should be a standard. There is a penalty: The presence of a standard im-
plies the pressure of conformance over a long period to a static document. This
could certainly serve to limit the growth and development of the language. Even
if motivated, the implementor, constrained to conform, would be prohibited

31

from adding extensions. Programs requiring nonstandard functionality could
not be developed. Unanticipated requirements could not be satisfied until after
the many years needed for a new revision had elapsed. The difficulties of spec-
ification of a standard could artificially limit the functionality because it might
be too difficult or unwieldy to word the true restrictions. Once a feature was
standardized, its life would be semi-eternal even if the feature were a mistake.
The result is that generally a very conservative posture is assumed in deciding
what is to be included. The potentially useful but untested functionality usually
doesn’t make it. These are all penalties to be weighed against the advantages of
portability and communication that standardization could provide.

A partial answer to these objections to having a standard was worked into the
interpretation section of the standard and has been carried into all the subse-
quent revisions of Fortran standards. The standard is to be interpreted as per-
missive. That is, that the standard serves only to specify a part, not all, of the
language. Anything not specified isn’t unclean, bad, immoral, or even not ko-
sher. It is simply not specified. Similarly, things that are prohibited are things
that are simply uninterpreted when violated. A standard program must be lim-
ited to what is specified in order to conform, but the same is not true for a pro-
cessor. A processor may provide array processing, but it must handle standard
subscripting in the conforming manner. Thus, an experimental extension can be
available in a standard processor. The processor must be able to properly inter-
pret standard programs, but may also provide interpretation to a nonconforming
program. The choice is then available to conform or not as the economics dic-
tate. Some nonconformance is encouraged.

The subcommittee decided that the target audience for the standard would be
compiler implementors or those on users’ staffs who were the Fortran support
experts. It was felt that this latter group were competent in being able to imple-
ment a compiler; so, in effect, there was just the implementor that characterized
the audience. It was felt that the standard should specify the requirements for a
standard conforming program rather than a compiler, but I don’t believe this
was apparent in the document.

The decision was made to use English rather than some metalanguage. This
was in the belief that the description of the semantics was the difficult problem.
Use of a metalanguage would not help there. A metalanguage was at best only

32

assisting in tackling the easiest part of the description. It was felt that its preci-
sion did not compensate for the need to become familiar with the added formal-
ity. Interestingly, the one most useful area that could have been served by a
precise description using a metalanguage is the FORMAT statement. There was
actually an error in the way it was specified in the standard. I am still unaware
of a complete and precise description of that statement using some metalan-
guage.

There were many challenges to our ability to describe. CDC had proposed
that the new logical IF be a two-way branch analogous to the arithmetic IF. This
would have saved us much descriptive grief in handling the concept of a com-
pound statement that had in this one place crept into the language. For example,
we could no longer accurately state that every statement could have a label. It
also led to an unduly harsh restriction prohibiting some forms of the logical IF
from being the terminal statement of a DO loop.

The greatest challenge to our descriptive capabilities was presented by the
extended range of a DO loop. (There are some who would claim that this honor
should go to the concept of second-level definition.) All the implementations of
Fortran IV being developed allowed a more liberal extended range than the one
appearing in the standard. The committee would have been amenable to a less
restrictive extended range if it could only have been appropriately described.
Everyone tried at least twice. Any definition that included statements about the
sanctity of the contents of index registers, although reflecting the real concern,
was inappropriate. The definition finally adopted was an accurate subset of
what everyone was providing. The definition was felt to be reasonably under-
standable. Those of you who have struggled with that definition and its prereq-
uisite concept of completely nested nest might quibble about the description
being reasonably understandable. This is only because you did not struggle with
some of the descriptions that were rejected. This was certainly an instance
where the ability to describe limited the technical content. I believe that there is
some of this effect in most standards. It is deluding not to admit it.

There were a surprisingly small number of new terms that had to be coined.
Terminology common to several manuals was preferred, since it would already
be familiar. The (usually missing) rigorous definitions of these terms had to be
developed. Among the newly coined terms were: definition and undefinition

33

and their related states of being defined or undefined; reference as applied to
data and to procedures; and intrinsic function.

The term “intrinsic function” had its birth at a bull session during one of our
meetings. We had been discussing the classification of functions, using the then
customary terms open and closed functions. Open functions meant in-line code;
closed meant some internal procedure. There was the concern that the absolute
function ABS, generally thought of as the obvious prototype of in-line code, was
no longer such when the argument was of complex data type. Further, the tight-
ening techniques being developed for some codes might make it attractive to
put more formerly closed functions in line, for greater speed. Besides, the ter-
minology smacked of a particular implementation consideration. Lou Gatt
piped up with the idea that the basic characteristic of these functions was that
they were cast into or intrinsic to the processor, and that therefore we should
call them intrinsic functions. So credit for this term belongs to Lou.

We were later to find that a subtle side benefit of our standards work was the
widespread use of the terminology used in the standard. Our terminology was
generally accepted and replaced the proliferation of some terms for certain ac-
tions and objects that were in use before without any rigorous and agreed-upon
definitions.

The subcommittee gave some consideration to how to enforce the standard
through use of acceptance procedures. Two hurdles caused us to turn away from
further work in this area.

We realized that an exhaustive verification was not possible. It might be mis-
leading to develop some partial verification package that might be construed as
being total. Any such official package might be misused as a standard perfor-
mance benchmark. The second hurdle was simply not having the manpower to
do the work. It was hoped that market pressures would lead to some accepted
verification means, but we didn’t have the resources.

The subcommittee X3.4.3-II drafting the specification based on Fortran II
was even smaller than that of X3.4.3-IV. Their membership, as I recall, was

Jack Palmer, IBM, chairman
Irwin Boris, Honeywell
Charles Davidson, University of Wisconsin, 1620 Users Group
Don Laird, Penn State University

34

Bob Bruneile, Honeywell Users and NIH
Bernice Weizenhoffer, IBM
Robert Hux, RCA

Partly because their target was better defined, X3.4.3-II completed their work
and the first draft Fortran standard almost a year before X3.4.3-IV finished.
They were directed by X3.4.3 to keep the draft on hold until X3.4.3-IV had its
draft ready. There was still the hope at that time that a compatible standard
representing Fortran II and Fortran IV could be produced.

Subsequently, X3.4.3 decided that there should be a standard for the full lan-
guage and a standard that was a proper subset of the full language. It was not
possible to use the X3.4.3-II draft as the subset because of the number of totally
incompatible differences between Fortran II and Fortran IV. The result was that
the work of the X3.4.3-II was discarded. The subset was created by deleting
text from the X3.4.3-IV draft. I hope that the draft produced by X3.4.3-II finds
its way into the archives of Fortran history. Through no fault of its own, the
effort of X3.4.3-II was not incorporated. Their work is historically significant
in that it was the first completed draft of any language standard.

In October 1964, the two proposed draft standards were published in the
Communications of the ACM. These were the first standards ever proposed for
a programming language. They severely taxed the editing and approval mech-
anisms of ASA and BEMA. Draft standards up to then rarely needed more than
a page of text and that page usually had room for the diagrams of the screw
thread. The inability to rigorously check for conformance was shattering. It is
little wonder that it took almost a year and a half before final approval was
obtained in April 1966. The full language standard was designated ASA X3.9-
1966 Fortran and the subset, ASA Basic Fortran.

Early in the standardization effort, the European Computer Manufacturers
Association (ECMA) submitted a proposed draft of what they felt the full lan-
guage should contain. Since they were separated from the developments in this
country, their proposal fell between the Basic Fortran and the full Fortran.
X3.4.3 voted to standardize on only two levels. When Fortran standardization
was considered by the International Standards Organization, the ANSI form and
content was chosen as the basis. The ECMA subset in ANSI form was added as
the intermediate of three levels.

35

INTERPRETATIONS PERIOD (1967-1970)
Late in 1967, the then disbanded X3.4.3 was recalled primarily through the urg-
ing of the National Bureau of Standards. NBS, and in particular, Betty Holber-
ton, was attempting to produce a Federal standard for Fortran. Betty’s exami-
nation of the X3.9-1966 Fortran standard led her to submit a few dozen ques-
tions on interpretation. Other clarification inquiries were received from other
sources. The Fortran group was revived as the only body that could authorita-
tively provide the clarifications. This process turned out to be more tedious and
demanding than the standardization effort itself. Because we were dealing with
an approved standard, not a single comma could be altered without going
through the same long approval cycle. Interpretations had to be based on a ra-
tionale developed from the standard’s actual wording and not from what even
the original authors felt it should have been. Two interpretation reports were
published, but they took over three years of meetings to produce. The difficulty
of that interpretation effort has had its impact on the form of the standard for
Fortran 77. Those who participated in both efforts took pains to carefully ex-
amine every phrase to reduce to a minimum the chance of misinterpretation.

By 1968 enough extensions had appeared in the more current implementa-
tions, to have the Fortran group appoint someone to study whether these exten-
sions should be standardized. Frank Engel was selected as the one to conduct
this study. Following Frank’s report, in January 1969, the committee voted not
to reaffirm X3.9-1966 when its review period came up, but to provide a new
draft standard.

The committee had a succession of chairmen during this period. Bill Heising
was replaced by Dick Ridgeway. Heising later returned as chairman prior to
having Dennis Hamilton assume the position. In September 1970 Frank Engle
assumed the chair and was to last throughout the development of Fortran 77.
Frank’s tenure, the longest of any chairman, ended in October 1977 when
Jeanne Adams, the current holder, was appointed.

Fortran 77
By early 1970 the interpretation activity had had it. There were unresolved is-
sues that could not be handled within the wording of X3.9-1966. They decided
that since the standard had to be reviewed and replaced or reaffirmed by 1971,
it would be more productive to abandon the clarification work and devote their

36

energy to a replacement. It is interesting that the most pessimistic schedule pro-
posed at that time had the draft available by the end of 1971. The initial effort
did not sharpen the ability to predict the time required to develop a standard.

Criteria and goals were drawn up for what would become Fortran 77. Their
gist was to evolve the language, keep it approximately the same “size,” and be
sure that its efficiency features would not be impaired. It was important that the
standard should be in a much more expository form and be meaningful to a
larger and less knowledgeable audience. The form of the revision was chosen
to be a single standard containing two subset levels. A later decision removed
the intermediate subset. Because of the single standard approach, ASA X3.10-
1966 Basic Fortran would be discarded (i.e., not reaffirmed).

They further voted that the new draft standard would be an evolutionary de-
velopment that would not invalidate programs written in the language of the
1966 standards. This position was subsequently modified in two significant ar-
eas. The Hollerith data type was deleted because it was replaced by the more
functional and machine independent character data type. The zero trip DO loop
was specified. Actually, the control conditions for a zero trip DO were condi-
tions that were nonconforming to the 1966 standard. However, since many im-
plementations interpreted these conditions by executing the statements in the
range once, many programs would have to be adjusted. There were objections,
even though the issue related to programs that were technically not standard
conforming.

Six years of effort went into Fortran 77. That standard represented work on
over two hundred technical proposals from all over the world. The cost of the
effort was in excess of two million dollars. The text was almost six times the
size of X3.9-1966. While some very significant language additions are present,
the expansion was largely attributable to the effort to make the document more
understandable. The draft had a completely different organization than the 1966
standard. Emphasis was on clarity rather than compactness and non-redun-
dancy. Extensive use was made of word processing, a concordance tool
(KWIC), computer graphics, and direct transcription to hard copy and fiche fa-
cilities. The very extensive editing, consistency checking, and rewriting; and
the distribution of the numerous interim drafts; were made possible only by
some herculean efforts of the two editors, Lloyd Campbell and J. C. Noll. The
editorial staff of ANSI was presented with a camera-ready copy of the draft for

37

publication, thus avoiding the errors that might have been introduced by an
ANSI stage of processing.

The features of the draft standard were publicly presented by X3J3 members
at the West Coast Fortran Forum held in Anaheim, California, in February 1976.
The following month, the draft standard appeared in a special edition of SIG-
PLan Notices. An East Coast Fortran Forum was later held at the National Bu-
reau of Standards in Gaithersburg, Maryland. Smaller groups of X3J3 members
presented sessions on the new language standard at meetings of professional
societies, user groups, and at conferences. The public review was initiated and
comments were solicited.

During the period of public comment and review 289 responses consisting of
1225 pages were received. This was probably the largest outpouring to any pro-
posed standard as of that time. It took almost a year for the committee to com-
plete the responses. The number of public comments was evidence of the large,
present, and continuing interest in the language and the understandability of the
document. Despite the earlier extensive checking by the committee, there were
a number of changes and corrections incorporated because of the comments.

The major issue, as measured by the volume of comments received, was to
add some facility in support of structured programming. [See Dijkstra’s letter
to Editor (ACM), page <#>.] There were a significant number of preprocessors
available that enabled Fortran programmers to develop programs using state-
ments such as IF . . . THEN . . .ELSE, DO WHILE, DO UNTIL, CASE state-
ments and the like. These preprocessors would convert the source into valid
Fortran statements. There was a clear requirement to place some of the facility
directly into the language. In responding, the committee felt that although some
facility should be added, there were many syntactic variations and an insuffi-
cient experience basis to select and standardize many of the constructs. They
took an appropriately conservative action of adding only the BLOCK IF con-
structs. This addition, as specified by Walt Brainerd [see note at end of this
selection], provided most of the important capability requested. It avoided add-
ing and being stuck with some of the other constructs such as DO UNTIL that
are already falling into disuse because of superior forms.

The reaction of X3J3 to the structured programming requests is a good ex-
ample of how a responsible committee should avoid an over-reaction that would
prematurely add features that it would shortly regret. Unfortunately, there are

38

counterexamples in Fortran 77 such as the ENTRY statement and the alternate
RETURN that should not have been included.

Approval of the standard came in April 1978. The official designation is
American National Standard programming language Fortran X3.9-1978. In
March 1980, an International Standards Organization Fortran, based upon the
ANSI standard and known as ISO 1539-1980, was approved by twenty-one
countries. This document is essentially a cover that references ANS X3.9-1978
for the English text and the French standard NF Z65-110 for the French text. In
September 1980, the US Federal Standard for Fortran (FIPS PUB 69), incorpo-
rating by reference X3.9-1978, was approved.

Next Revision (1978-Present [1982])
Following the approvals of the Fortran 77 standards, the expected lull in the
standardization activity did not materialize. There was pressure to consider the
additions received during the public response to Fortran 77 that were rejected
as premature. New Fortran implementations were incorporating additions such
as a free form for statements. CODASYL had established a group (Fortran Data
Base Language Committee, FDBLC) to provide a foundation for the addition
of a major database augmentation to the language. ISA and the Purdue Work-
shop had developed standards addressing issues of tasking, file synchroniza-
tion, and event management. An interest in a graphic addition was looming.

The committee devoted its time during 1978 to the planning for the future
direction of the language. They solicited the thoughts of many other interested
groups such as ISA, CODASYL, IEEE, and SIGNUM who were known to be
interested in Fortran extensions. The level of interaction with international bod-
ies was dramatically increased. International meetings under the informal struc-
ture of ISO Fortran Experts Group were convened in Europe during 1977, 1978,
1979, and 1980. All of this activity was in the attempt to obtain a broad basis
of experience upon which to develop the successor standard.

X3J3 felt confident it could manage desired additional language features such
as free form for statements, new control and data structures, and even most of
the array handling. They even felt comfortable in handling the removal of some
of the basic restrictions such as dynamic storage allocation, recursion, identifi-
cation via storage association, and storage related precision. However, they
were unsure of how to cope with major augmentations such as the database and

39

graphics handling. The additions would be expensive, not only in the cost of
the processors, but in the breadth of the language that would be impacted. Even
those not interested in these features would be paying a price in terms of what
they would have to know to work with the language. The committee knew it
did not have the expertise to select among the competing forms of database and
graphics facilities. It wanted to be able to responsibly control these augmenta-
tions and yet didn’t see how a single committee could commandeer all of the
expertise needed for this development and management.

The answer is one that is still evolving and is a change in the architecture of
the language. It is called the core-plus-modules approach. The plan for the lan-
guage revision, called Fortran 8X, is to specify a relatively small, general pur-
pose, self-sustaining core language. There would be added features that would
modernize and streamline the language. The size of this core language would
not exceed that of Fortran 77 because there would be compensating deletions.
The core would be provided with very strong facilities to be able to interface
with modules whose use could be selectively chosen. These modules would
have to follow some broad conventions established by the committee to qualify
as part of the Fortran family.

There would be two classes of modules, language extension modules and ap-
plication modules. A language extension module would be developed by X3J3
and would represent features that exceed the general purpose scope of the core.
It might also consist of features that were desirable for addition, but that had
not been subject to sufficient implementation or usage experience. An extension
module could not be modified and approved for standardization without recon-
sideration of the core and all of the other language extension modules.

One special language extension module would be called the Obsolete (Tran-
sition) Features Module. This module would contain all of the features needed
for compatibility with the previous revision (Fortran 77). Features being
dropped in a revision would survive for one cycle in this module. When this
module was employed, it would override any incompatible features of the cur-
rent language.

An applications module would probably be specified by some group external
to X3J3 and would address features of some special domain. Examples might
be one (or more) of the database facilities, a query capability, or a graphics
addition. These would probably take the form of a collateral standard, so its

40

maintenance could be managed independently. The hope is that through use of
modularity, the heart of what is identified as Fortran might remain small.

FUTURES
Over this period of twenty years of standardization we have been through two
complete cycles and are in the midst of a third. How long does this go on and
when does it end? Jean Sammet once asked me if it weren’t time for the Fortran
gurus to get together and call an end to the effort so people can get on with the
using of the good languages. I have reservations over which of the current
choices should be crowned the “good” languages. There should be something
fundamentally different and better to justify dropping the huge investment in
the current languages. The replacement should have features that defy compat-
ible inclusion in what we have.

Until this revolutionary development makes its appearance, interest in
Fortran will remain. There is the story of the farmer who was asked by one of
his eager turks why he didn't replace his old burro with one of the younger,
sleeker, more highly tuned and spirited steeds. He looked at the young hand
with wrinkled and wizened eyes and said, “When you have something yeh gotta
be sure gets done, yeh goes with what you knows.” So be it with Fortran.

REFERENCES
1. Heising, William P., and Richard K. Ridgeway. “Fortran.” Proposal distrib-
uted to ASA X3.4.3, June 1962.
2. Heising, William P. “History and Summary of Fortran Standardization De-
velopment for the ASA. “Commun. of ACM (Vol. 7, No. 10) October 1964,
590.
3. ASA X3.4.3. “Fortran vs. Basic Fortran.” Commun. of ACM (Vol. 7, No.
10) October 1964, pp. 591-625.
4. ASA. American Standard Fortran (ASA X3.9-1966).
5. ASA. American Standard Basic Fortran (ASA X3.10-1966).
6. USASI. “Clarification of Fortran Standards – initial progress. “Commun. of
ACM (Vol. 12, No. 5) May 1969, pp. 289-294.
7. ANSI. “Clarification of Fortran Standards – second report.” Commun. of
ACM (Vol. 14, No. 10) October 1971, pp. 628-642.

41

8. Greenfield, Martin N. “Fortran – A History of a Pragmatic Language,”
HLSUA 1974 Meeting, June 11, 1974.
9. Greenfield, Martin N. “Background and Interpretation of the Fortran Draft
Proposed Standard.” The WEST COAST Fortran FORUM Anaheim, Califor-
nia, February 9, 1976.
10. ANSI. “Draft Proposed ANS Fortran.” SIGPLan Notices (Vol. 11, No. 3),
March 1976.
11. Brainerd, W. editor. “Fortran 77.” Commun. of ACM (Vol. 21, No. 10),
October 1978, pp. 806 – 820.
12. ANSI. American National Standard programming language Fortran, ANSI
X3.9-1978.
13. ISO. Programming languages – Fortran. ISO 1539-1980.
14. US Department of Commerce National Bureau of Standards. Fortran. FIPS
PUB 69. September 4, 1980.
15. CODASYL FDBLC. Fortran Data Base Facility, Journal of Development,
January 1980

LPM Note:
“Fortran 77: featuring structured programming” (Meissner and Organick, 1980,
p 480) describes the statements IF (e) THEN, ELSE IF (e) THEN, ELSE, and
END IF.
A “block IF construct” begins with an IF-THEN statement and ends with an
END IF statement. “Between the IF-THEN and the corresponding END IF there
may appear any number of ELSE IF-THEN statements, and at most one ELSE
(which must not precede any of the ELSE IF-THEN statements). Groups of
statements [block IF constructs] delimited by IF-THEN and END IF must be
properly nested, both with respect to other such groups and with respect to DO
loops. Transfer of control into such groups is prohibited.”

42

Edsger W. Dijkstra (1968)
PolyTechnical University, Eindhoven, The Netherlands

Letters to the Editor
Go To Statement Considered Harmful

Communications of the ACM, Vol 11 (3), 1968 pp. 147-148

EDITOR:
For a number of years I have been familiar with the observation that the quality
of programmers is a decreasing function of the density of go to statements in
the programs they produce. More recently I discovered why the use of the go
to statement has such disastrous effects, and I became convinced that the go to
statement should be abolished from all “higher level” programming languages
(i.e. everything except, perhaps, plain machine code). At that time I did not at-
tach too much importance to this discovery; I now submit my considerations
for publication because in very recent discussions in which the subject turned
up, I have been urged to do so.

My first remark is that, although the programmer’s activity ends when he has
constructed a correct program, the process taking place under control of his
program is the true subject matter of his activity, for it is this process that has
to accomplish the desired effect; it is this process that in its dynamic behavior
has to satisfy the desired specifications. Yet, once the program has been made,
the “making” of the corresponding process is delegated to the machine.

My second remark is that our intellectual powers are rather geared to master
static relations and that our powers to visualize processes evolving in time are
relatively poorly developed. For that reason we should do (as wise programmers
aware of our limitations) our utmost to shorten the conceptual gap between the
static program and the dynamic process, to make the correspondence between
the program (spread out in text space) and the process (spread out in time) as
trivial as possible.

Let us now consider how we can characterize the progress of a process. (You
may think about this question in a very concrete manner: suppose that a process,
considered as a time succession of actions, is stopped after an arbitrary action,
what data do we have to fix in order that we can redo the process until the very
same point?) If the program text is a pure concatenation of, say, assignment

43

statements (for the purpose of this discussion regarded as the descriptions of
single actions) it is sufficient to point in the program text to a point between
two successive action descriptions. (In the absence of go to statements I can
permit myself the syntactic ambiguity in the last three words of the previous
sentence: if we parse them as “successive (action descriptions)” we mean suc-
cessive in text space; if we parse as “(successive action) descriptions” we mean
successive in time.) Let us call such a pointer to a suitable place in the text a
“textual index.”

When we include conditional clauses (if B then A), alternative clauses (if B
then A1 else A2), choice clauses as introduced by C. A. R. Hoare (case[i] of (A1,
A2, … , An)), or conditional expressions as introduced by J. McCarthy (B1 ->
El, B2 -> E2, . . . , Bn -> En), the fact remains that the progress of the process
remains characterized by a single textual index.

As soon as we include in our language procedures we must admit that a single
textual index is no longer sufficient. In the case that a textual index points to
the interior of a procedure body the dynamic progress is only characterized
when we also give to which call of the procedure we refer. With the inclusion
of procedures we can characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the dynamic depth of
procedure calling.

Let us now consider repetition clauses (like, while B repeat A or repeat A
until B). Logically speaking, such clauses are now superfluous, because. we can
express repetition with the aid of recursive procedures. For reasons of realism I
don’t wish to exclude them: on the one hand, repetition clauses can be imple-
mented quite comfortably with present day finite equipment; on the other hand,
the reasoning pattern known as “induction” makes us well equipped to retain
our intellectual grasp on the processes generated by repetition clauses. With the
inclusion of the repetition clauses textual indices are no longer sufficient to de-
scribe the dynamic progress of the process. With each entry into a repetition
clause, however, we can associate a so-called “dynamic index,” inexorably
counting the ordinal number of the corresponding current repetition. As repeti-
tion clauses (just as procedure calls) may be applied nestedly, we find that now
the progress of the process can always be uniquely characterized by a (mixed)
sequence of textual and/or dynamic indices.

44

The main point is that the values of these indices are outside programmer’s
control; they are generated (either by the write-up of his program or by the dy-
namic evolution of the process) whether he wishes or not. They provide inde-
pendent coordinates in which to describe the progress of the process.

Why do we need such independent coordinates? The reason is – and this
seems to be inherent to sequential processes-that we can interpret the value of
a variable only with respect to the progress of the process. If we wish to count
the number, n say, of people in an initially empty room, we can achieve this by
increasing n by one whenever we see someone entering the room. In the in-
between moment that we have observed someone entering the room but have
not yet performed the subsequent increase of n, its value equals the number of
people in the room minus one!

The unbridled use of the go to statement has an immediate consequence that
it becomes terribly hard to find a meaningful set of coordinates in which to
describe the process progress. Usually, people take into account as well the val-
ues of some well-chosen variables, but this is out of the question because it is
relative to the progress that the meaning of these values is to be understood!
With the go to statement one can, of course, still describe the progress uniquely
by a counter counting the number of actions performed since program start (viz.
a kind of normalized clock). The difficulty is that such a coordinate, although
unique, is utterly unhelpful. In such a coordinate system it becomes an ex-
tremely complicated affair to define all those points of progress where, say, n
equals the number of persons in the room minus one!

The go to statement as it stands is just too primitive; it is too much an invita-
tion to make a mess of one’s program. One can regard and appreciate the clauses
considered as bridling its use. I do not claim that the clauses mentioned are
exhaustive in the sense that they will satisfy all needs, but whatever clauses are
suggested (e.g. abortion clauses) they should satisfy the requirement that a pro-
grammer independent coordinate system can be maintained to describe the pro-
cess in a helpful and manageable way.

It is hard to end this with a fair acknowledgment. Am I to judge by whom my
thinking has been influenced? It is fairly obvious that I am not uninfluenced by
Peter Landin and Christopher Strachey. Finally I should like to record (as I re-
member it quite distinctly) how Heinz Zemanek at the pre-ALGOL meeting in
early 1959 in Copenhagen quite explicitly expressed his doubts whether the go

45

to statement should be treated on equal syntactic footing with the assignment
statement. To a modest extent I blame myself for not having then drawn the
consequences of his remark.

The remark about the undesirability of the go to statement is far from new. I
remember having read the explicit recommendation to restrict the use of the go
to statement to alarm exits, but I have not been able to trace it; presumably, it
has been made by C. A. R. Hoare. in [l, Sec. 3.2.1.] Wirth and Hoare together
make a remark in the same direction in motivating the case construction: “Like
the conditional, it mirrors the dynamic structure of a program more clearly than
go to statements and switches, and it eliminates the need for introducing a large
number of labels in the program.”

In [2] Giuseppe Jacopini seems to have proved the (logical) superfluousness
of the go to statement. The exercise to translate an arbitrary flow diagram more
or less mechanically into a jumpless one, however, is not to be recommended.
Then the resulting flow diagram cannot be expected to be more transparent than
the original one.
REFERENCES:

1. Wirth, Niklaus, and Hoare, C.A. R. A contribution to the development of
ALGOL. Comm. ACM 9 (June 1966), 413-432.

2. Böhm, Corrado, and Jacopini, Guiseppe. Flow diagrams, Turing Machines
and languages with only two formation rules. Comm. ACM 9 (May 1966),
366-371

Edsger W Dijkstra
Technological University
Eindhoven, The Netherlands

http://www.thocp.net/biographies/papers/goto_considered_harmful.htm#1
http://www.thocp.net/biographies/papers/goto_considered_harmful.htm#2

46

X3J3 Planning Subcommittee Meeting, July 1977: Pre-meeting Distribution

ANS X3.9 Fortran Revision – Final Report

Frank Engel, Chairman
American National Standards Institute Technical Committee X3J3 completed
work on the revised American National Standard X3.9 Fortran [Fortran 77] in ac-
cordance with established procedures. By a nearly unanimous vote of 28 to 1,
X3J3 recommends that X3 proceed with the final processing of the amended
[Board of Standards Review] BSR 13.9 Fortran, document X3d3/90, as the ANS
X3.9 Fortran (revised). Upon final approval, this document will supersede ANS
X3.9-1966 Fortran [Fortran 66] and will provide definitions for both the Fortran
language and the subset Fortran language. X3J3 also recommends that the ANS
X3.10-1966 Basic Fortran be withdrawn.

A previous report, document X3/75-99, presented to X3 in October, 1975, de-
scribed in detail the work of X3J3 in preparing the dpANS X3.9 Fortran document
X3J3/75. This supplementary report covers the activities of X3J3 from December„
1975 to the present, and includes the preparation and publication of BSR X3.9
Fortran (X3J3/76) for public review and comment, the processing of the public
comments and responses, and the repair of document X3J3/76 that resulted from
consideration of the public comments.

Publication of dpANS X3.9 Fortran
Following X3J3 letter ballot approval for submittal for further processing and X3
approval for publication for public review, the dpANS X3.9 Fortran full language
and its subset was published as the March, 1976 issue of the ACM SIGPLan No-
tices, Vol.11, No.3. Of the initial printing of 8000 copies, 6000 went to SIGPLan
members throughout the world; 400 copies were purchased by NBS for federal
government use; 200 copies were distributed by CBEMA, including 85 sent to the
International Standards Association; 100 copies were sold to Fortran Forum at-
tendees; and 50 copies were purchased by the British Computer Society Fortran
Specialists Group (BCS/FSG) for distribution in England. ACM reported this to
be one of their most active publications, and that a second printing was necessary
to meet the demand. Thus there have been over 8000 copies of the BSR X3.9
Fortran document distributed. In contrast, the COBOL document BSR X3.23 had
a printing of 2000 copies, 1000 of which were purchased by a single vendor, 100
by the federal government, and 500 by the general public; and the PL/1 document

47

BSR X3.53 had a printing of 1000 copies, 300 going to the federal government
and 400 to the general public. The price of the BSR X3.9 Fortran document was
$5.00 per copy, while the COBOL and PL/1 documents sold for $6.00 and $8.00,
respectively.

The document, including the cover, was printed from photo-ready copy pre-
pared by J. Crawford Noll of Bell Telephone Laboratories, using automated text
editing facilities that were available to X3J3 in the development of the draft pro-
posed standard. The publication format featured a side-by-side presentation of the
full Fortran language and the subset in a section by section alinement. The BSR
X3.9 comprises 18 sections, six appendices, a table of contents and an index for a
total of 200 pages.

Informing the Public
At the instigation of X3J3 two special meetings were organized to discuss the BSR
X3.9 Fortran. The West Coast Fortran Forum sponsored by the Los Angeles Chap-
ters of the ACM and SIGPLan was held in Anaheim preceding the Computer Sci-
ence Conference in February 1976, and the ACM SIGPLan Fortran Forum III was
held at the National Bureau of Standards in Gaithersburg in March, 1976. Both
forums were co-sponsored by NBS, and programs featured X3J3 members giving
presentations on various aspects of the proposed revision of the Fortran standard.
Each forum was attended by over 200 persons who enthusiastically responded fa-
vorably to the proposed standard.

X3J3 members have made presentations on the proposed standard at other na-
tional meetings including the 1976 National Computer Conference, the 1976
ACM National Conference and the major user groups, and at local meetings such
as ACM chapters and university colloquia. They have also discussed the proposed
standard at international meetings including ECMA/TC8, SEAS, the BCS/FSG,
the Purdue Workshop Fortran Committee and the IFIP Working Group 2.5 on
Numerical Software.

Public Review and Comment Processing
The public review period began March l, 1976 with the publication of the SIG-
PLan Notices; however, due to administrative anomalies beyond the control of
X3J3 the formal official ANSI announcement was delayed, and the closing date
of the public review period was extended by X3 from July 4, as originally stated

48

in the published document, to September 28, 1976. Thus, the document was avail-
able for seven months for review by the general public.

The wide distribution and discussion of the document resulted in a large number
of comments. Some 289 individual s and organizations submitted 1225 pages of
comments, citing 2397 items to the attention of the committee. While many of the
comment letters cited only one item (most notably the fifty-three that ignored eve-
rything, except the IF-THEN-ELSE proposal that had been publicized in FOR-
WORD), there were a substantial number that cited more than twenty to thirty
items each. Many letters indicated a very careful review and understanding of the
document by the authors, and a sincere concern for the development of the Fortran
language. The comments were overwhelmingly favorable and complimentary of
the committee’s efforts in revising the Fortran language standard, as exemplified
by the following quotation from C143:

“… Despite the extent of these comments and suggestions, my overall
reaction is favorable and I would recommend its (BSR X3.9) adoption,
even if none of my suggestions is acted upon…. Let me compliment
X3J3 on a job well done.” Then, after 60 pages of 74 comment items,
he concluded with: “The proposed standard is such an improvement
over the 1966 standard that I cannot wholeheartedly support any pro-
posal, however valuable, which may delay its adoption.”

A summary and analysis of the public comments is given in Attachment A.
Some of the comments, anticipating the continued enthusiasm and interest in
Fortran that will result from the adoption of this proposed standard, offered sug-
gestions for inclusion in the next revision of the standard. Others suggested that
new features be included in this current revision, or that some of the features be
modified or deleted from the current revision. The comment items were distrib-
uted among several categories as follows:

Addition of new features 40%
Modifications to existing features 16%
Deletion of features 6%
Textual clarity, style, etc. 27%
Clarification & interpretation 6%
Misunderstanding 2%

The very few adverse comments received fell into several categories:

49

1. “Fortran is an ill-structured language and should not be extended.” –
C213.2

2 “It fails utterly to correct any of the manifest failings of Fortran.” – C
213.16

3 “The standards committee does a disservice by removing such features”
that invalidate existing standard conforming programs. – C25

4“The proposal does not go far enough …” – C213.4, C218
5 The proposed standard goes too far. “The committee should not do devel-

opment work.” – C282
With the exception of the first critique, these represent diametrically opposing

views that are impossible to satisfy simultaneously. The amended BSR X3.9
Fortran represents a good compromise between the extreme positions, between
modest growth and development of the standard Fortran language and the state-
of-the-art that is consistent with the criteria X3J3 established to govern this revi-
sion (cf X3/75-99). The first criticism likewise cannot be satisfied by any repair
of the document. For everyone holding this position there are hundreds – perhaps
even thousands – who feel that a new Fortran standard is needed.

At its July, 1976 meeting X3J3 began processing the comments. As each letter
was received the X3J3 Secretary assigned it a sequence number, identified each
separate item discussed in the letter, and assigned responsibility for each item to
one of seven X3J3 working groups. The annotation C149.8-2 identifies the eighth
item of comment letter C 149, for which working group 2 had cognizance. The
annotated comment letters were distributed to the committee members as working
document X3J3/81, with an index and cross reference list of group assignments
by comment item and author. The members assigned to the seven working groups
and the sections of the proposed standard for which each group was responsible
are given Appendix E of the Minutes of the 54th and subsequent meetings.

The working group prepared an appropriate response to each comment item that
was assigned to it. When a change to the BSR X3.9 document was deemed neces-
sary by the working group, the group prepared and submitted a proposal for con-
sideration by the full committee, together with the textual modifications recom-
mended by the group to effect the change. The individual comment responses,
containing a list of the comment items to which each applied, were distributed to
each X3J3 member in working document X3J3/82. Any member could raise ob-

50

jection to a response and call for full committee consideration of any group re-
sponse. Using text editing facilities provided by Tom Gibson and Bruce Puerling
of Bell Telephone Laboratories, X3J3/8? was reissued as working document
X3J3/82.1 in which the responses were reordered and arranged by comment letter
and item number, instead of the response number organization employed in /82.
Prior to the May, 1977 X3J3 meeting, each comment letter and its responses were
assigned to at least three X3J3 members for an independent review and critique as
to the relevance and adequacy of the response to each item. At the May, 1977
meeting the full committee then considered the results of the members’ critiques,
and approved the set of responses, as appropriately modified, that is contained in
document X3J3/91.

For the record, documents X3J3/81 and /91 are transmitted herewith, and they
may be examined by anyone desiring so to do. Presumably arrangements may be
made with the X3 Secretariat, should anyone require copies of these voluminous
documents for himself. X3J3 is sending to each commenter a copy of his annotated
letter from X3J3/81 and the set of responses to his comments from X3J3/91.

Repair and Modification of the BSR X 3.9 Document
In considering the proposals arising from the public comments, X3J3 was reluc-
tant to make any changes to the BSR X3.9 Fortran document. In particular, the
committee wished to avoid any drastic changes that might necessitate another ex-
tended public review and further delay the promulgation of this overdue revision.
Thus, a major reorganization and rewriting of certain sections was rejected, as was
any change in style or formalism of syntactic description. Changes that corrected
errors and misstatements or improved the clarity of the text were considered to be
mandatory. The committee also recognized the desirability of modifying or re-
moving syntactic forms that might inhibit the future development of the Fortran
language as suggested by the public comments and/or that would improve pro-
gram portability. Each proposed change to the BSR X3.9 Fortran document,
whether editorial or substantive, was acted upon by the full committee at one of
the nine meetings held since December, 1975. Most of the proposals were put
forward by the working groups or by the editor, and a small number were offered
independently by individual X3J3 members. Over 500 motions to change the doc-
ument were considered, with 83% being approved, 14% rejected and 3% tabled
without a deciding vote, these motions and proposals are fully documented in the
several minutes of X3J3 meetings.

51

With respect to the several categories of the public comment items, the commit-
tee actions were as follows:

Addition of new features: 18% accepted
Modifications to existing features: 46% accepted
Deletion of features: 21% accepted
Textual cl arity, style, etc. 56% accepted

It would be noted that in rejecting a new feature for inclusion in this revision,
X3J3 was not necessarily opposed to the feature as a part of the Fortran language,
but the committee was deferring the feature until the next revision, rather than
delay the promulgation of this revision. The committee had previously considered
most of these items at one time or another and failed to complete the work neces-
sary for their adoption. For some items more time is needed to develop a consen-
sus, and experience to be gained with the implementation and use of this revision
will be helpful in determining that consensus. Other items require much work and
time to incorporate them into the document, and the interactive effects of such
extensive changes militates against their being undertaken at this stage of the re-
vision process. Similarly, in refusing to delete a feature from the language at this
time, the committee was not precluding that from being done at some future time
when another revision is undertaken.

Attachment B is a summary of the X3J3 actions with respect to substantive is-
sues affecting the language features that arose from the consideration of the public
comments. In addition to those actions that resulted in changes from X3J3/76,
(BSR X3.9) document, Attachment B also includes a list of X3d3 actions that re-
jected proposed modifications and affirmed the features as described in X3J3/76.
Finally, Attachment B contains a list of the major differences in the revised ANS
X3.9 Fortran, X3J3/90 from the ANS X3.9-1966 Fortran that it replaces.

Informing the Public – Continued
During the year since the BSR Fortran document was published and the initial
public review, X3J3 has striven to keep the public informed of its actions. The
current X3J.3 mailing list contains 240 addresses. Included in the mailing list are
representatives of ECMA/TC8 and the British, Danish, Dutch, French, Japanese
and Swedish national standards bodies. They have received notices of X3J3 meet-
ings and the complete minutes of those meetings, which as noted above, fully doc-
ument the committee’ s actions. Of the eight interim revisions to X3J3/76 that

52

have been prepared as working documents of the committee, four have been dis-
tributed to the full mail ing list, including X3J3/76. 7 which includes al l substan-
tive revisions. Following each X3J3 meeting, a committee approved press release
was issued announcing the significant actions that had been taken.

An X3d3 member, Dr. Loren Meissner of the University of California Lawrence
Berkeley Laboratories, is Editor of FOR-WORD, a newsletter published by the
Fortran Development Committee of the ACM SIGPLan. The FOR-WORD distri-
bution includes the entire X3J3 mailing list, every comment letter author, and
every Fortran Forum attendee, among others interested in Fortran. Summaries of
the changes to X3Ö3/76 that were approved by X3J3 have been regularly pub-
lished in FOR-WORD by Dr. Meissner. These summaries also appeared in SIG-
PLan Notices in January, and April, 1977.

There has been an ongoing dialogue with the general public through continued
correspondence and in person. Twenty-nine visitors have attended the nine X3J3
meetings and have interacted directly with the committee Following the Fortran
Forums, X3J3 members met with interested attendees discussing the proposed
standard and exchanging ideas about the language development. X3J3 members
recently attended the BCS/FSG and ECMA/TC8 meetings to discuss the final
amended BSR X3.9 Fortran. Representatives of those groups have attended X3J3
meetings, and Mr. Watson of JCL has become a member of X3J3 representing
ECMA/TC8.

The reply to each comment letter in addition to the responses to each item per
X3J3/91, will also include a copy of Attachment B, so that the author will be in-
formed of all of the changes accepted and rejected by the committee, and not just
the committee’s reaction to those items mentioned in his own letter.

Administrative Summary
X3/75-99 reported on the X3J3 meetings, membership participation and sponsor
representation through October, 1975. Since that time there have been nine more
committee meetings and further changes in the membership. Of the six members
who then had served for eight years from the inception of the clarification and
revision work in 1967, there remain four who now have completed ten years of
active service with the committee. Due to reassignment of responsibilities within
their sponsoring organizations, Carl Bailey of Sandia Corporation and Ward Klein
of IBM have withdrawn from membership. Martin Greenfield of Honeywell In-
formation Systems is vice chairman of X3J3 and was a member of ASA X3.4.3

53

committee and participated actively in the development of the 1966 standards.
Lloyd Campbell of the U. S. Amy Ballistics Research Laboratory is secretary of
X3J3, and as editor has been personally responsible for the consistency of style,
grammar, etc. apparent in the document. Betty Holberton of the NBS and the
writer are the other long standing members still on the committee, and together
these four account for over twenty percent of the total meeting man years that have
gone into the preparation of the document. There has been a slight reduction in
representation of producers for small dp systems, and an increase in the participa-
tion by both government and general users of the Fortran language. These are re-
flected in the data of Table 1, which includes the information reported previously
in X3/75-99.

Since October, 1975, X3J3 members expended 852 meeting man days in com-

pleting its letter ballot responses, preparing X3J3/76 for publication as BSR X3.9
Fortran, considering comments, preparing and approving comment responses, and
repairing the document for submission for final approval as the ANS X3.9 Fortran.
Thus, the total effort invested in producing the amended document which we now

54

submit for your approval is at least 33 man years, 6.8 man years representing the
latter period covered by this report. As suggested in X3/75-,99, this represents an
expenditure in excess of two million dollars. The text editing resource, document
preparation and distribution represents an additional expenditure in excess of
$100,000.

Future Projections
There is a strong consensus in X3J3 that the amended BSR X3.9 Fortran is a good
and sound base upon which future Fortran standard developments can take place
in whatever direction they may go. With the cooperation of X3 and ANSI, these
events will take place:

June 1977: X3 acceptance of our recommendation to proceed with the final
processing of the revised standard
July to September 1977: The 60-day X3 letter ballot for final approval and
concurrent public review period
October 1977: X3J3 consider and respond to those issues that may arise from
the letter ballot and final public review, if any
November 1977: Publication of ANS X3.9-1977 Fortran
November 1977: International Standards Organization TC97/SC5 Fortran
working group having requested and received document X3J3/90, meeting
to consider its adoption as revision of ISO R-1539 Fortran. The AFNOR
organization has begun the translation of BSR X3.9 into French, and has
requested that no more changes be made
November 1980: X3J3 publication of dpANS X3.9 Fortran for the next re-
visionuse
November 1982: Publication of ANS X3.9-1982 Fortran

From the consideration of the public comments on BSR X3.9 Fortran, it is ap-
parent that another revision of the standard should be anticipated. The latest date
for it to appear should be November 1982, if the five year ANSI review cycle is
honored, and the current revision is issued in November 1977 as postulated. As-
suming that two years will be required for publication, public review and com-
ment, and final processing (as occurred this time), then the draft proposed next
revision document should be completed in November, 1980. That being scarcely
three years away, it is essential that X3J3 immediately initiate the preparation of
that document.

55

In October, 1975, I appointed a subcommittee on future revisions, and directed
that it:

Develop suitable criteria to determine whether or not another revision of
ANS X3.9 is necessary and desirable
Develop suitable objectives for a future revision of ANS X3e9
Develop suitable criteria for acceptance or rejection of proposed changes to
the language
Determine how the language can best adapt to future needs and divers re-
quirements to collect and classify candidate features for a future revision

Because of the ongoing work on the current revision and the demands on X3J3
resources to respond to the public comments, this subcommittee will hold its first
meeting in July. It will draft the SD-3 document proposing that a project be estab-
lished to. prepare a draft proposed revision of ANS X3.9-1977 Fortran for release
for public review and comment in 1980. It has taken two years to change the atti-
tude of X3J3 members from trying to get one more new feature into this revision,
to focusing on the next revision as the proper time to make other needed exten-
sions to the language. A not insignificant contributing factor in this transition has
been sponsor pressure to terminate this project that has extended over ten years.
Sponsors, too, have been looking at the cost in individual terms, and have set limits
for their continued participation.

The alternative to this projected schedule of events, should further repair of BSR
X3.9 Fortran be contemplated, is not at all attractive, unless one’ s objective is to
forestall the continued popularity of Fortran. To amend this document again would
mean at least another two years’ delay in its final adoption, inasmuch as that is the
time it takes to go through the cycle of repair, publish, respond, vote, etc. Opening
up for reconsideration, with the anticipated change in X3J3 membership, will most
certainly result in changes to the language, not all of which will be those desired
by the dissenting voices. Such changes made under the duress of a short review
and repair” cycle can only degrade the document, as a standard, rather than im-
prove it. However, in terms of the time frame, this amended, inferior document
would appear in November 1979, just one year before the draft proposed ANS
X3.9 for the following revision will appear, according to our projected schedule
of events. There is no assurance that the amended amended document will be any
more acceptable to all who then ballot. Could it be that the cycle would repeat
again, and again, and …?

56

There are strong indications that the world will not wait another two years for
an acceptable Fortran standard. BSR X3.9 Fortran, either in the published version
of X3J3/76 or the amended version of X3J3/90 may very well become the de facto
standard without becoming the “approved” ANSI standard. We are aware of at
least two existing implementations for significant systems that profess to be
“Fortran 77 conforming processors,” and there are indications that most producers
are well along with implementations of such processors for their systems. There
have been rumors that there is pressure for the federal government to adopt a fed-
eral standard for Fortran; If there is not an ANSI standard adopted now, then’ that
federal standard would be the BSR X3.9 Fortran. We believe that a further delay
in adopting the revised Fortran standard will not be in the best interests of stand-
ardization, but will encourage the proliferation of those practices that standardiza-
tion is intended to avoid.

Conclusion
The American National Standards Institute Technical Committee X3J3 has fully
and responsibly discharged its obligations:

To produce the revised ANS X3.9 Fortran
To inform the public of all its actions
To respond to the needs of the Fortran community throughout the world

The public has responded enthusiastically and overwhelmingly in favor of the
committee’s actions, and eagerly awaits the new standard. The international stand-
ards body is prepared to proceed immediately with the new American National
Standard X3. 9-1977 Fortran as the basis for revision of ISO R-1539 Fortran. In
response to public demand, X3J3 has initiated work leading to the preparation of
the draft proposed revision document to meet the next mandatory revision cycle.

57

Numerical Recipes in Fortran 90
Second Edition, Volume 2, of Fortran Numerical Recipes

CAMBRIDGE UNIVERSITY PRESS, 1996

FOREWORD
(Pages x-xx)

Michael Metcalf
Sipping coffee on a sunbaked terrace can be surprisingly productive. One of the
Numerical Recipes authors and I were each lecturing at the International Center
for Theoretical Physics in Trieste, Italy, he on numerical analysis and I on
Fortran 90. The numerical analysis community had made important contribu-
tions to the development of the new Fortran standard, and so, unsurprisingly, it
became quickly apparent that the algorithms for which Numerical Recipes had
become renowned could, to great advantage, be recast in a new mold. These
algorithms had, hitherto, been expressed in serial form, first in Fortran 77 and
then in C, Pascal, and Basic. Now, nested iterations could be replaced by array
operations and assignments, and the other features of a rich array language
could be exploited. Thus was the idea of a “Numerical Recipes in Fortran 90”
first conceived and, after three years’ gestation, it is a delight to assist at the
birth.

But what is Fortran 90? How did it begin, what shaped it, and how, after
nearly foundering, did its driving forces finally steer it to a successful conclu-
sion?

The Birth of a Standard
Back in 1966, the version of Fortran now known as Fortran 66 was the first
language ever to be standardized, by the predecessor of the present American
National Standards Institute (ANSI). It was an all-American affair. Fortran had
first been developed by John Backus of IBM in New York, and it was the dom-
inant scientific programming language in North America. Many Europeans pre-
ferred Algol (in which Backus had also had a hand). Eventually, however, the
mathematicians who favored Algol for its precisely expressible syntax began to
defer to the scientists and engineers who appreciated Fortran’s pragmatic, even
natural, style. In 1978, the upgraded Fortran 77 was standardized by the ANSI
technical committee, X3J3, and subsequently endorsed by other national bodies

58

and by ISO in Geneva, Switzerland. Its dominance in all fields of scientific and
numerical computing grew as new, highly optimizing compilers came onto the
market. Although newer languages, particularly Pascal, Basic, PL/1, and later
Ada attracted their own adherents, scientific users throughout the 1980s re-
mained true to Fortran. Only towards the end of that decade did C draw increas-
ing support from scientific programmers who had discovered the power of
structures and pointers.

During all this time, X3J3 kept functioning, developing the successor version
to Fortran 77. It was to be a decade of strife and contention. The early plans, in
the late 1970s, were mainly to add to Fortran 77 features that had had to be left
out of that standard. Among these were dynamic storage and an array language,
enabling it to map directly onto the architecture of supercomputers, then coming
onto the market. The intention was to have this new version ready within five
years, in 1982. But two new factors became significant at that time. The first
was the decision that the next standard should not just codify existing practice,
as had largely been the case in 1966 and 1978, but also extend the functionality
of the language through innovative additions (even though, for the array lan-
guage, there was significant borrowing from John Iverson’s APL and from DAP
Fortran). The second factor was that X3J3 no longer operated under only Amer-
ican auspices. In the course of the 1980s, the standardization of programming
languages came increasingly under the authority of the international body, ISO.
Initially this was in an advisory role, but now ISO is the body that, through its
technical committee WG5 (in full, ISO/IEC JTCl/SC22/WG5), is responsible
for determining the course of the language. WG5 also steers the work of the
development body, then as now, the highly skilled and competent X3J3. As we
shall see, this shift in authority was crucial at the most difficult moment of
Fortran 90’s development.

The internationalization of the standards effort was reflected in the welcome
given by X3J3 to six or seven European members; they, and about one-third of
X3J3’s U.S. members, provided the overlapping core of membership of X3J3
and WG5 that was vital in the final years in bringing the work to a successful
conclusion. X3J3 membership, which peaked at about 45, is restricted to one
voting member per organization, and significant decisions require a majority of
two-thirds of those voting.

59

Nationality plays no role, except in determining the U.S. position on an in-
ternational issue. Members, who are drawn mainly from the vendors, large re-
search laboratories, and academia, must be present or represented at two-thirds
of all meetings in order to retain voting rights.

In 1980, X3J3 reported on its plans to the forerunner of WG5 in Amsterdam,
Holland. Fortran 8x, as it was dubbed, was to have a basic array language, new
looping constructs, a bit data type, data structures, a free source form, a mech-
anism to “group” procedures, and another to manage the global name space.
Old features, including COMMON, EQUIVALENCE and the arithmetic-IF,
were to be consigned to a so-called obsolete module, destined to disappear in a
subsequent revision. This was part of the “core plus modules” architecture, for
adding new features and retiring old ones, an aid to backwards compatibility.
Even though Fortran 77 compilers were barely available, the work seemed well
advanced and the mood was optimistic. Publication was intended to take place
in 1985. It was not to be.

One problem was the sheer number of new features that were proposed as
additions to the language, most of them worthwhile in themselves but with the
totality being too large. This became a recurrent theme throughout the develop-
ment of the standard. One example was the suggestion of Lawrie Schonfelder
(Liverpool University), at a WG5 meeting in Vienna, Austria, in 1982, that cer-
tain features already proposed as additions could be combined to provide a full-
blown derived data type facility, thus providing Fortran with abstract data types.
This idea was taken up by X3J3 and has since come to be recognized, along
with the array language, as one of the two main advances brought about by what
became Fortran 90. However, the ramifications go very deep: all the technical
details of how to handle arrays of objects of derived types that in turn have array
components that have the pointer attribute, and so forth, have to be precisely
defined and rigorously specified.

Conflict
The meetings of X3J3 were often full of drama. Most compiler vendors were
represented as a matter of course but, for many, their main objective appeared
to be to maintain the status quo and to ensure that Fortran 90 never saw the light
of day. One vendor’s extended (and much-copied) version of Fortran 77 had
virtually become an industry standard, and it saw as its mission the maintenance

60

of this lead. A new standard would cost it its perceived precious advantage.
Other large vendors had similar points of view, although those marketing su-
percomputers were clearly keen on the array language. Most users, on the other
hand, were hardly prepared to invest large amounts of their employers’ and their
own resources in simply settling for a trivial set of improvements to the existing
standard. However, as long as X3J3 worked under a simple majority voting
rule, at least some apparent progress could be made, although the underlying
differences often surfaced. These were even sometimes between users – those
who wanted Fortran to become a truly modern language and those wanting to
maintain indefinite backwards compatibility for their billions of lines of exist-
ing code.

At a watershed meeting, in Scranton, Pennsylvania, in 1986, held in an at-
mosphere that sometimes verged on despair, a fragile compromise was reached
as a basis for further work. One breakthrough was to weaken the procedures for
removing outdated features from the language, particularly by removing no fea-
tures whatsoever from the next standard and by striking storage association (i.e.,
COMMON and EQUIVALENCE) from the list of features to be designated as
obsolescent (as they are now known). A series of votes definitively removed
from the language all plans to add: arrays of arrays, exception handling, nesting
of internal procedures, the FORALL statement (now in Fortran 95), and a
means to access skew array sections. There were other features on this list that,
although removed, were reinstated at later meetings: user-defined operators,
operator overloading, array and structure constructors, and vector-valued sub-
scripts. After many more travails, the committee voted, a year later, by 26 votes
to 9, to forward the document for what was to become the first of three periods
of public comment.

While the document was going through the formal standards bureaucracy and
being placed before the public, X3J3 polished it further. X3J3 also prepared
procedures for processing the comments it anticipated receiving from the pub-
lic, and to each of which, under the rules, it would have to reply individually. It
was just as well. Roughly 400 replies flooded in, many of them very detailed
and, disappointingly for those of us wanting a new standard quickly, unques-
tionably negative towards our work. For many it was too radical, but many oth-
ers pleaded for yet more modern features, such as pointers.

61

Now the committee was deadlocked. Given that a document had already been
published, any further change required not a simple but a two-thirds majority.
The conservatives and the radicals could each block a move to modify the draft
standard, or to accept a revised one for public review – and just that happened,
in Champagne-Urbana, Illinois, in [May] 1988. Any change, be it on the one
hand to modify the list of obsolescent features, to add the pointers or bit data
type wanted by the public, to add multi-byte characters to support Kanji and
other non-European languages or, on the other hand, to emasculate the language
by removing modules or operator overloading, and hence abstract data types, to
name but some suggestions, none of these could be done individually or collec-
tively in a way that would achieve consensus. I wrote:

“In my opinion, no standard can now emerge without either a huge conces-
sion by the users to the vendors (MODULE / USE) and/or a major change in
the composition of the committee. I do not see how members who have worked
for up to a decade or more, devoting time and intellectual energy far beyond the
call of duty, can be expected to make yet more personal sacrifices if no end to
the work is in sight, or if that end is nothing but a travesty of what had been
designed and intended as a modern scientific programming language. … I think
the August [1988] meeting will be a watershed — if no progress is achieved
there will be dramatic resignations, and ISO could even remove the work from
ANSI, which is failing conspicuously in its task.” (However, the same notes
began with a quotation from The Taming of the Shrew: “And do as adversaries
do in law, / Strive mightily, but eat and drink / as friend.” That we always did,
copiously.)

Resolution
The “August meeting” was, unexpectedly, imbued with a spirit of compromise
that had been so sadly lacking at the previous one. Nevertheless, after a week
of discussing four separate plans to rescue the standard, no agreement was
reached. Now the question seriously arose: Was X3J3 incapable of producing a
new Fortran standard for the international community, doomed to eternal dead-
lock, a victim of ANSI procedures?

Breakthrough was achieved at a traumatic meeting of WG5 in Paris, France,
a month later [September 1988]. The committee spent several extraordinary
days drawing up a detailed list of what it wanted to be in Fortran 8x. Finally, it

62

set X3J3 an ultimatum that was unprecedented in the standards world: The
ANSI committee was to produce a new draft document, corresponding to
WG5’s wishes, within five months! Failing that, WG5 would assume responsi-
bility and produce the new standard itself.

This decision was backed by the senior U.S. committee, X3, which effec-
tively directed X3J3 to carry out WG5’s wishes. And it did [with some stretch-
ing of the “five months” deadline]! The following November [1989], it imple-
mented most of the technical changes, adding pointers, bit manipulation intrin-
sic procedures, and vector-valued subscripts, and removing user-defined ele-
mental functions (now in Fortran 95). The actual list of changes was much
longer. X3J3 and WG5, now collaborating closely, often in grueling six-day
meetings, spent the next 18 months and two more periods of (positive) public
comment putting the finishing touches to what was now called Fortran 90, and
it was finally adopted, after some cliff-hanging votes, for forwarding as a U.S.
and international standard on April 11, 1991, in Minneapolis, Minnesota.

Among the remaining issues that were decided along the way were whether
pointers should be a data type or be defined in terms of an attribute of a variable,
implying strong typing (the latter was chosen), whether the new standard should
coexist alongside the old one rather than definitively replace it (it coexisted for
a while in the U.S., but was a replacement elsewhere, under ISO rules), and
whether, in the new free source form, blanks should be significant (fortunately,
they are).

Fortran 90
The main new features of Fortran 90 are, first and foremost, the array language
and abstract data types. The first is built on whole array operations and assign-
ments, array sections, intrinsic procedures for arrays, and dynamic storage. It
was designed with optimization in mind.
The second is built on modules and module procedures, derived data types, op-
erator overloading and generic interfaces, together with pointers. Also im-
portant are the new facilities for numerical computation including a set of nu-
meric inquiry functions, the parametrization of the intrinsic types, new control
constructs — SELECT CASE and new forms of DO, internal and recursive
procedures and optional and keyword arguments, improved I/O facilities, and
many new intrinsic procedures. Last but not least are the new free source form,

63

an improved style of attribute-oriented specifications, the IMPLICIT NONE
statement, and a mechanism for identifying redundant features for subsequent
removal from the language. The requirement on compilers to be able to identify,
for example, syntax extensions, and to report why a program has been rejected,
are also significant. The resulting language is not only a far more powerful tool
than its successor [predecessor?], but a safer and more reliable one too. Storage
association, with its attendant dangers, is not abolished, but rendered unneces-
sary. Indeed, experience shows that compilers detect errors far more frequently
than before, resulting in a faster development cycle. The array syntax and re-
cursion also allow quite compact code to be written, a further aid to safe pro-
gramming.

No programming language can succeed if it consists simply of a definition
(witness Algol 68). Also required are robust compilers from a wide variety of
vendors, documentation at various levels, and a body of experience. The first
Fortran 90 compiler appeared surprisingly quickly, in 1991, especially in view
of the widely touted opinion that it would be very difficult to write one. Even
more remarkable was that it was written by one person, Malcolm Cohen of
NAG, in Oxford, U.K. There was a gap before other compilers appeared, but
now they exist as native implementations for almost all leading computers, from
the largest to PCs. For the most part, they produce very efficient object code;
where, for certain new features, this is not the case, work is in progress to im-
prove them.

The first book, Fortran 90 Explained, was published by John Reid and me
shortly before the standard itself was published. Others followed in quick suc-
cession, including excellent texts aimed at the college market. At the time of
writing there are at least 19 books in English and 22 in various other languages:
Chinese, Dutch, French, Japanese, Russian, and Swedish. Thus, the documen-
tation condition is fulfilled.

The body of experience, on the other hand, has yet to be built up to a critical
size. Teaching of the language at college level has only just begun. However, I
am certain that this present volume will contribute decisively to a significant
breakthrough, as it provides models not only of the numerical algorithms for
which previous editions are already famed, but also of an excellent Fortran 90
style, something that can develop only with time. Redundant features are ab-
jured. It shows that, if we abandon these features and use new ones in their

64

place, the appearance of code can initially seem unfamiliar, but, in fact, the
advantages become rapidly apparent. This new edition of Numerical Recipes
stands as a landmark in this regard.

Fortran Evolution
The formal procedures under which languages are standardized require them
either to evolve or to die. A standard that has not been revised for some years
must either be revised and approved anew, or be withdrawn. This matches the
technical pressure on the language developers to accommodate the increasing
complexity both of the problems to be tackled in scientific computation and of
the underlying hardware on which programs run. Increasing problem complex-
ity requires more powerful features and syntax; new hardware needs language
features that map onto it well.

Thus it was that X3J3 and WG5, having finished Fortran 90, began a new
round of improvement. They decided very quickly on new procedures that
would avoid the disputes that bedeviled the previous work: WG5 would decide
on a plan for future standards, and X3J3 would act as the so-called development
body that would actually produce them. This would be done to a strict timetable,
such that any feature that could not be completed on time would have to wait
for the next round. It was further decided that the next major revision should
appear a decade after Fortran 90 but, given the somewhat discomforting number
of requests for interpretation that had arrived, about 200, that a minor revision
should be prepared for mid-term, in 1995. This should contain only “correc-
tions, clarifications and interpretations” and a very limited number (some
thought none) of minor improvements.

At the same time, scientific programmers were becoming increasingly con-
cerned at the variety of methods that were necessary to gain efficient perfor-
mance from the ever-more widely used parallel architectures. Each vendor pro-
vided a different set of parallel extensions for Fortran, and some academic re-
searchers had developed yet others. On the initiative of Ken Kennedy of Rice
University, a High-Performance Fortran Forum was established. A coalition of
vendors and users, its aim was to produce an ad hoc set of extensions to Fortran
that would become an informal but widely accepted standard for portable code.
It set itself the daunting task of achieving that in just one year, and succeeded.
Melding existing dialects like Fortran D, CM Fortran, and Vienna Fortran, and

65

adopting the new Fortran 90 as a base, because of its array syntax, High-Per-
formance Fortran (HPF) was published in 1993 and has since become widely
implemented. However, although HPF was designed for data parallel codes and
mainly implemented in the form of directives that appear to non-HPF proces-
sors as comment lines, an adequate functionality could not be achieved without
extending the Fortran syntax. This was done in the form of the PURE attribute
for functions — an assertion that they contain no side effects — and the
FORALL construct — a form of array assignment expressed with the help of
indices.

The dangers of having diverging or competing forms of Fortran 90 were im-
mediately apparent, and the standards committees wisely decided to incorporate
these two syntactic changes also into Fortran 95. But they didn’t stop there.
Two further extensions, useful not only for their expressive power but also to
access parallel hardware, were added: elemental functions, ones written in
terms of scalars but that accept array arguments of any permitted shape or size,
and an extension to allow nesting of WHERE constructs, Fortran’s form of
masked assignment. To readers of Numerical Recipes, perhaps the most rele-
vant of the minor improvements that Fortran 95 brings are the ability to distin-
guish between a negative and a positive real zero, automatic deallocation of
allocatable arrays, and a means to initialize the values of components of objects
of derived data types and to initialize pointers to null.

The medium-term objective of a relatively minor upgrade has been achieved
on schedule. But what does the future hold? Developments in the underlying
principles of procedural programming languages have not ceased. Early Fortran
introduced the concepts of expression abstraction (X = Y + Z) and later control
expression (e.g., the DO loop). Fortran 77 continued this with the if-then-else,
and Fortran 90 with the DO and SELECT CASE constructs. Fortran 90 has a
still higher level of expression abstraction (array assignments and expressions)
as well as data structures and even full-blown abstract data types. However,
during the 1980s the concept of objects came to the fore, with methods bound
to the objects on which they operate. Here, one particular language, C++, has
come to dominate the field. Fortran 90 lacks a means to point to functions, but
otherwise has most of the necessary features in place, and the standards com-
mittees are now faced with the dilemma of deciding whether to make the
planned Fortran 2000 a fully object-oriented language. This could possibly

66

jeopardize its powerful, and efficient, numerical capabilities by too great an in-
crease in language complexity, so should they simply batten down the hatches
and not defer to what might be only a passing storm? At the time of writing,
this is an open issue. One issue that is not open is Fortran’s lack of in-built
exception handling. It is virtually certain that such a facility, much requested by
the numerical community, and guided by John Reid, will be part of the next
major revision. The list of other requirements is long but speculative, but some
at the top of the list are conditional compilation, command line argument han-
dling, I/O for objects of derived type, and asynchronous I/O (which is also
planned for the next release of HPF). In the meantime, some particularly press-
ing needs have been identified, for the handling of floating-point exceptions,
interoperability with C, and allowing allocatable arrays as structure compo-
nents, dummy arguments, and function results. These have led WG5 to begin
processing these three items using a special form of fast track, so that they might
become optional but standard extensions well before Fortran 2000 itself is pub-
lished in the year 2001.

Conclusion
Writing a book is always something of a gamble. Unlike a novel that stands or
falls on its own, a book devoted to a programming language is dependent on
the success of others, and so the risk is greater still. However, this new Numer-
ical Recipes in Fortran 90 volume is no ordinary book, since it comes as the
continuation of a highly successful series, and so great is its significance that it
can, in fact, influence the outcome in its own favor. I am entirely confident that
its publication will be seen as an important event in the story of Fortran 90, and
congratulate its authors on having performed a great service to the field of nu-
merical computing.

67

Journal of Computer Science and Technology
Vol 11, No 1, Apr 2011

See also: Encyclopedia of Science and Technology, vol. 6
(Academic Press, 1992): Fortran (Pages 632-637)

The Seven Ages of Fortran
Michael Metcalf

Abstract

When IBM's John Backus first developed the Fortran programming language,
back in 1957, he certainly never dreamt that it would become a world-wide
success and still be going strong many years later. Given the oft-repeated
predictions of its imminent demise. starting around 1968. it is a surprise. even
to some of its most devoted users. that this much-maligned language is not
only still with us. but is being further developed for the demanding applica-
tions of the future. What has made this programming language succeed where
most slip into oblivion?
One reason is certainly that the language has been regularly standardized. In
this paper we will trace the evolution of the language from its first version
and though six cycles of formal revision. and speculate on how this might
continue.
Now modern Fortran is a procedural imperative compiled language with a
syntax well suited to a direct representation of mathematical formulas. Indi-
vidual procedures may be compiled separately or grouped into modules. ei-
ther way allowing the convenient construction of very large programs and
procedure libraries. Procedures communicate via global data areas or by ar-
gument association. The language now contains features for array processing.
abstract data types, dynamic data structures. object oriented programming,
and parallel processing.

68

Language evolution

1. The First Age: Origins
In the early days of computing, programming was tedious in the extreme –
every tiny step had to be coded as a separate machine instruction, and the pro-
grammer had to be familiar with the intimate details of the computer's opera-
tion. Spurred by a perceived economic need to provide a form of ‘automatic
programming’ to allow efficient use of manpower and computers, Backus pro-
posed, at the end of 1953, to begin the development of the Fortran programming
language (the name being a contraction of FORmula TRANslation). The over-
riding objective of the development team was to produce a compiler that would
produce efficient object code comparable to that of hand-written assembly
code.

Fortran came as a breakthrough. Instead of writing some obscure hieroglyph-
ics, say as an instruction to divide two variables A and B and to save the result
in C, the programmer could now write a more intelligible and natural statement,
namely

C = A/B

This is called expression abstraction, because mathematical expressions
could be written more-or-less as they appear in a textbook. Herein lay the se-
crets of Fortran’s initial rapid spread: scientists could write programs to solve
problems themselves, in a familiar way and with only limited recourse to pro-
fessional programmers, and that same program, once written, could be trans-
ported to any other computer which had a Fortran compiler. The first version,
now known as Fortran I, contained early forms of constructs that have survived
to the present day: simple and subscripted variables, the assignment statement,
a do-loop, mixed-mode arithmetic, and input/output (I/O) specifications.

Many novel compiling techniques had to be developed, and it was not until
1957 that the first compiler was released to users of the target machine, the IBM
704. First experience showed that, indeed, it increased programmer efficiency
and allowed scientists and engineers to program easily for themselves. The
source form and syntax liberated programmers from the rigid input formats of
assembly languages. Fortran was an immediate success.

Ease of learning and stress on optimization are two hallmarks of Fortran that
have contributed to its continued popularity.

69

Based on the experience with Fortran I, it was decided to introduce a new
version, Fortran II, in 1958. The crucial differences between the two were the
introduction of subprograms, with their associated concepts of shared data ar-
eas, and separate compilation. Fortran II became the basis for the development
of compilers by other manufacturers. A more advanced version was developed
for the IBM 704 – Fortran III – but it was never released.

2. The Second Age: Fortran 66
In 1961, an IBM users’ organization requested from IBM a new version, now
called Fortran IV, which contained type statements, the logical-if statement, the
possibility to pass procedure names as arguments, and the data statement and
block data subprogram. Some original features, such as device-dependent I/O
statements, were dropped.

Fortran IV was released in 1962 and quickly became available on other ma-
chines, but often in the form of a dialect. Indeed, the proliferation of these dia-
lects led an American Standards Association (ASA) Working Group to develop
a standard definition for the language. In 1966, a standard for Fortran was pub-
lished, based on Fortran IV. This was the first programming language to achieve
recognition as a national, and subsequently international (ISO, Geneva), stand-
ard, and is now known as Fortran 66.

Fortran 66 was made available on almost every computer made at that time,
and was often pressed into service for tasks for which it had never been de-
signed. Thus began a period during which it was very popular with scientists,
but newer, more modern languages were appearing, including Algol 60, whose
‘superior’ concepts led to predictions that it would rapidly replace ‘old fash-
ioned` Fortran because of the latter’s limitations. It became increasingly criti-
cized, especially by academic computer scientists.

3. The Third Age: Fortran 77
The permissiveness of the Fortran 66 standard, whereby any extensions could
be implemented on a given processor so long as it still correctly processed a
standard-conforming program, led again to a proliferation of dialects. These
dialects typically provided much-needed additional features, such as bit han-
dling, or gave access to hardware-specific features, such as byte-oriented data
types. Since the rules of ASA’s successor, the American National Standards

70

Institute (ANSI), required that a standard be reaffirmed, withdrawn or revised
after a five-year period has elapsed, the reformed Fortran committee, X3J3, de-
cided on a revision. This was published by ANSI, and shortly afterwards by
ISO, in 1978, and became known as Fortran 77. The new standard brought with
it many new features, for instance the if…then…else construct (from the
push for ‘structured programming’), a character data type, and much enhanced
I/O.

The new language was rather slow to spread. This was due in part to certain
conversion problems and also to the decision of one large manufacturer, IBM,
not to introduce a new compiler until 1982. It was thus only in the mid-1980s
that Fortran 77 finally took over from Fortran 66 as the most used version. Ul-
timately, it became a hugely successful language for which compilers were
available on every type of computer from the PC to the mighty Cray. Programs
written in Fortran 77 were routinely used to perform such diverse calculations
as designing the shapes of airplane fuselages, predicting the structures of or-
ganic molecules, and simulating the flow of winds over mountains.

Algol is now a dead language, however it begat descendants, most notably
Pascal and Ada, and these too, in their time, together with IBM's PL/1, were
variously considered to be about to deliver the coup-de-grâce to Fortran. But
the new standard lent it a new vigour that allowed it to maintain its position as
the most widely used scientific applications language of the time. However, it
began to yield its position as a teaching language.

The entire issue of the journal Annals of the History of Computing. Vol. 6,
No. 1 (1984) is devoted to papers on the early history of Fortran.

4. The Fourth Age: The battle for Fortran 90
As computers doubled in power every few years, and became able to perform
calculations on many numbers simultaneously, by the use of processors running
in parallel, and as the problems to be solved became ever more complex, the
question arose as to whether Fortran 77 was still adequate. (And there were a
large number of user requests left over that it had not been possible to include
in it.) Programs of over a million lines became commonplace, and managing
their complexity and having the means to write them reliably and understanda-
bly – so that they produce correct results and could later be modified – were
desperately required.

71

Thus began the battle over Fortran 90 [and a change to lower case spelling].
Fortran had been attacked by computer scientists on two grounds. One was be-
cause of its positively dangerous aspects, for instance the lack of any inherent
protection against overwriting the contents of memory in the computer, includ-
ing the program instructions themselves! The other was its lack of indispensible
language features, such as the ability to control the logical flow through a pro-
gram in a clearly structured manner. On the other hand, Fortran had always been
a relatively easy language to learn and that, combined with its emphasis on ef-
ficient, high-speed processing, had kept it attractive to many busy scientists.
Thus, the standards committees were faced with the almost impossible task of
modernising the language and making it safer to use, whilst at the same time
keeping it ‘Fortran-like’ and efficient. Fortran 90 was the answer.

There were other justifications for continuing to revise the definition of the
language. As well as standardizing vendor extensions, there was a need to re-
spond to the developments in language design that had been exploited in other
languages, such as APL, Algol 68, Pascal, Ada, C and C++. Here, X3J3 could
draw on the obvious benefits of concepts like data hiding. In the same vein was
the need to begin to provide an alternative to dangerous storage association, to
abolish the rigidity of the outmoded source form, and to improve further on the
regularity of the language, as well as to increase the safety of programming in
the language and to tighten the conformance requirements. To preserve the vast
investment in Fortran 77 codes, the whole of Fortran 77 was retained as a sub-
set. However, unlike the previous standard, which resulted almost entirely from
an effort to standardize existing practices, the Fortran 90 standard was much
more a development of the language, introducing features that were new to
Fortran, although based on experience in other languages. This tactic, in fact,
proved to be highly controversial, both within the committee and with the wider
community. Vested interests got in on the act, determined, depending on their
persuasion, and in particular on whether they were users or vendors, either to
extend Fortran to cope better with new computers and new problem domains or
to stop the whole process in its tracks. The technical and political infighting
reached legendary proportions. It was not until 1991, after much vigorous de-
bate and thirteen years’ work, that Fortran 90 was finally published by ISO.

It introduced a new notation that allows arrays of numbers, for instance ma-
trices, to be handled in a natural and clear way, and added many new built-in

72

facilities for manipulating such arrays, for example, to add together all the num-
bers in an array, a single command (sum) is all that is required. The use of the
array-handling facilities made scientific programming simpler, less error prone
and, on the most powerful computers whose hardware can handle vectors of
numbers, potentially more efficient than ever.

To make programs more reliable, the language introduced a wealth of fea-
tures designed to catch programming errors during the early phase of compila-
tion, when they can be quickly and cheaply corrected. These features included
new ways of structuring programs and the ability to ensure that the components
of a program, the subprograms, ‘fit together’ properly. For instance, Fortran 90
makes it simple to ensure that an argument mismatch can never arise as it ena-
bles programmers to construct verifiable interfaces between subprograms.

In summary, the main features of Fortran 90 were, first and foremost, the
array language and data abstraction. The former is built on whole array opera-
tions and assignments, array sections, intrinsic procedures for arrays, and dy-
namic storage. It was designed with optimization in mind. The latter is built on
modules and module procedures, derived data types, operator overloading and
generic interfaces, together with pointers. Also important were the new facili-
ties for numerical computation, including a set of numeric inquiry functions,
the parameterization of the intrinsic types, new control constructs – select
case and new forms of do, internal and recursive procedures and optional and
keyword arguments, improved I/O facilities, and many new intrinsic proce-
dures. Last but not least were the new free source form, an improved style of
attribute-oriented specifications, the implicit none statement, and a mech-
anism for identifying redundant features for subsequent removal from the lan-
guage. The requirement on compilers to be able to identify syntax extensions,
and to report why a program had been rejected, was also significant. The result-
ing language was not only a far more powerful tool than its predecessor, but a
safer and more reliable one too. Storage association, with its attendant dangers,
was not abolished, but rendered unnecessary. Indeed, experience showed that
compilers detected errors far more frequently than before, resulting in a faster
development cycle. The array syntax and recursion also allowed quite compact
code to be written, a further aid to safe programming. Fortran 90 also allowed
programmers to tailor data types to their exact needs. Another advance was the

73

language's new ability to structure program data into arbitrarily complex pat-
terns – lists, graphs, trees, etc. – and to manipulate these structures conven-
iently. This is achieved through the use of pointers. A related feature was the
ability to allocate storage for program data dynamically.

After this revision, Fortran became, it must be admitted, a different language,
as the entire issue of the journal [Computer Standards & Interfaces, Vol. 18
(1996)], which is devoted to various aspects of the development of Fortran 90,
shows.

5. The Fifth Age: A minor revision, Fortran 95
Following the publication of Fortran 90, two further significant developments
concerning the language occurred. The first was the continued operation of the
two standards committees, J3 (as X3J3 became known) and the international
WG5, and the second was the founding of the High Performance Fortran Forum
(HPFF).

Early on in their deliberations, the committees decided on a strategy whereby
a minor revision of Fortran 90 would be prepared by the mid-1990s and a fur-
ther revision by about the year 2000. The first revision, Fortran 95, is the subject
of this section.

 The HPFF was set up in an effort to define a set of extensions to Fortran,
such that it would be possible to write portable, single-threaded code when us-
ing parallel computers for handling problems involving large sets of data that
can be represented by regular grids. This version of Fortran was to be known as
High Performance Fortran (HPF), and Fortran 90 was chosen as the base lan-
guage. Thus, HPF was a superset of Fortran 90, the main extensions being ex-
pressed in the form of directives. However, it did become necessary also to add
some additional syntax, as not all of the desired features could be accommo-
dated in the form of directives.

It was evident that, in order to avoid the development of divergent dialects of
Fortran, it would be desirable to include the new syntax defined by HPF in
Fortran 95 and, indeed, these features were the most significant new ones that
Fortran 95 introduced. The other changes consisted mainly of what are known
as corrections, clarifications and interpretations. Only a small number of other
pressing but minor language changes were made.

A new ISO standard, replacing Fortran 90, was adopted in 1997.

74

6. The Sixth Age: Fortran 2003
Without a break, standardization continued, and the following language stand-
ard, Fortran 2003, was published, somewhat delayed, in 2004. The major en-
hancements were:

• Derived type enhancements: parameterized derived types, improved con-
trol of accessibility, improved structure constructors, and finalizers.

• Object-oriented programming support: type extension, inheritance, poly-
morphism, dynamic type allocation, and type-bound procedures.

• Data manipulation enhancements: deferred type parameters, the vola-
tile attribute, explicit type specification in array constructors and allocate
statements, pointer enhancements, extended initialization expressions, and en-
hanced intrinsic procedures.

• Input/output enhancements: asynchronous transfer, stream access, user-
specified transfer operations for derived types, user-specified control of round-
ing during format conversions, named constants for pre-connected units, the
flush statement, regularization of keywords, and access to error messages.

• Procedure pointers.
• Support for the exceptions of the IEEE Floating-Point Standard (IEEE

1989).
• Interoperability with the C programming language.
• Support for international usage: access to ISO 10646 4-byte characters

and the choice of decimal or comma in numeric formatted input/output.
• Enhanced integration with the host operating system: access to command-

line arguments, environment variables, and processor error messages.
In addition, there were numerous minor changes but Fortran 2003 was essen-

tially upwards compatible with the Fortran 95 standard that it replaced. The
enhancements had, after all, been developed in response to demands from users
and to keep Fortran relevant to the needs of programmers, without losing the
vast investment in existing programs.

Related standards
No Fortran standard up to and including Fortran 2003 included any significant
feature intended directly to facilitate parallel programming. Rather, this has had

75

to be achieved through the intermediary of ad hoc industry standards, in partic-
ular HPF, MPI, OpenMP and Posix Threads.

HPF directives take the form of Fortran comment lines that are recognized as
such only by an HPF processor. An example is

!HPF$ ALIGN WITH b :: a1, a2, a3

to align three conformable (matching in shape) arrays with a fourth, thus ensur-
ing locality of reference. Further directives allow, for instance, aligned arrays
to be distributed over a set of processors.

MPI is a library specification for message passing. OpenMP supports multi-
platform, shared-memory parallel programming and consists of a set of com-
piler directives, library routines, and environment variables that determine run-
time behaviour. Posix Threads is again a library specification, for multithread-
ing.

MPI and OpenMP have both become widespread, but HPF has ultimately met
with little success.

7. The Seventh Age: Fortran 2008
Notwithstanding the fact that Fortran 2003conformant compilers have been
very slow to appear, the standardization committees proceeded with yet another
standard, Fortran 2008. Its single most important new feature is coarray han-
dling (described below). Further, the do concurrent form of loop control
and the contiguous attribute are introduced. Other major new features in-
clude: sub-modules, enhanced access to data objects, enhancements to I/O and
to execution control, and more intrinsic procedures, in particular for bit pro-
cessing. Fortran 2008 was published in 2010 [3], and is the current standard.

Fortran concepts
Programming languages have many features in common. In this section some
that represent Fortran’s special strengths are briefly outlined. Its object-oriented
features are, however, omitted, but these and all the other features are fully de-
scribed in [ISO/IEC 1539-1: 2010. ISO, Geneva, Switzerland. [4] Metcalf, M.,
Reid. J. and Cohen, M. (2011). Modern Fortran Explained. Oxford University
Press, Oxford and New York.].

…

http://en.wikipedia.org/wiki/Compiler_directive
http://en.wikipedia.org/wiki/Environment_variable

76

The status of Fortran

1. Challenges from other languages
Fortran has always had a slightly old-fashioned image. In the 1960s, the block-
structured language Algol was regarded as superior to Fortran. In the 1970s the
more powerful PL/1 was expected to replace Fortran. Algol’s successors Pascal
and Ada caused Fortran proponents some concern in the 1980s. Meanwhile, it
continued successfully as the workhorse of scientific computing. However, by
the late 1980s, two developments did begin seriously to impinge on Fortran’s
predominance in this field: Unix and object orientation.

Unix brought with it the highly-successful general-purpose language C,
which was further developed into C++, an object-oriented language. C is widely
used for all levels of system programming and made inroads into Fortran’s tra-
ditional numerical computing community. C++ came to dominate many pro-
gramming applications especially those requiring sophisticated program inter-
faces. Another object-oriented language, Java, has also come into widespread
use.

Fortran’s particular advantages as a high-end numerical language, especially
where arrays are the main data object and/or where complex arithmetic is in-
volved, remain. It is able to attain the highest achievable optimization, mainly
because multidimensional arrays are ‘natural’ objects and because its pointers
are highly constrained. Nevertheless, whether modern Fortran will, in the long
term, be able to withstand the immense pressure from other languages remains
an open question. However, there is every sign that Fortran continues to be used
to tackle major scientific computing problems, and will long remain a living
memorial to the early pioneers. Indeed, at a Workshop on Software in High-
Energy Physics in 1982, I predicted that: “Fortran is likely to remain into the
next century as, at the very least, a special-purpose scientific and numerical
language for large-scale, computing-intensive applications and, strengthened
especially by its array capabilities, will be one of a small range of widely-used
languages in general use”. This turned out to be not too far from the truth!

2. The international Fortran community
Fortran is an international language both in the sense that it used throughout
the world, and also in that the community of international users has, over the

77

last 30 years, actively participated in the development of the standards. Fur-
thermore, the Internet and the World-Wide Web have facilitated the develop-
ment of international user communities.

These groups are important in the dissemination of Fortran news, such as
announcements of new compilers, and as sources of help and advice to users
in general. The ACM publishes Fortran Forum, a special interest publication
on Fortran with an international readership and containing articles on Fortran
language developments and user experience.

We thus see that there is a healthy user community, even if the language now
occupies, in contrast to the past, only a niche in the world of programming, but
one nevertheless concerned with large and important applications. Long may it
continue!

Bibliography: Fortran History
Michael Metcalf (2016, unpublished)

John Backus 1957 paper (republished)
Programming Systems and Languages S. Rosen, ed (McGraw Hill, 1967) pp.

29-47

First two textbooks (for Fortran II)
A Guide to Fortran Programming Daniel D McCracken (Wiley, 1961)
A Fortran Primer Elliott I Organick (Addison-Wesley, 1963)

Early history of Fortran (Fortran I to Fortran 77)
Programming Languages: History and Fundamentals Jean E Sammet (Pren-

tice Hall, 1969)
The History of Fortran I, II, and III John Backus (ACM SIGPLan History of

Programming Languages Conference - Preprints, published in ACM SIG-
PLan Notices 13:8, August 1978) pp. 165-180.

Programming language standardisation I D Hill and B L Meek, eds (Ellis
Horwood, 1980) Fortran, W S Brainerd, Chapter 2, p. 34.

History of Programming Languages R L Wexelblat, ed (Academic Press,
1981) pp. 25-74.

Annals of the History of Computing (AFIP 6:1, January, 1984) whole issue

78

Encyclopedia of Science and Technology, vol. 5 (Academic Press, 1986)
Fortran

Fortran 90
Fortran Optimization M Metcalf (Academic Press, 1982) Chapter 12, pp.

194-210. [A snapshot of the plans for Fortran 90 (then known as Fortran
8x), as foreseen in 1982. A later snapshot appears in the 1986 Edition.]

The Fortran (Not the Foresight) Saga: The Light and the Dark B Meek (SIG-
PLan Special Interest Publication on Fortran, Fortran Forum: ACM Press)
Vol 9 No 2, Oct 1990 [just before Fortran 90 was adopted; also online at
www.fortran.com/fortran/forsaga]

Fortran 90 Explained M Metcalf and J Reid (Oxford University Press, 1990)
Chapter 1, pp. 3-8.

Encyclopedia of Science and Technology, vol. 6 (Academic Press, 1992)
Fortran pp. 632-637.

Numerical Recipes in Fortran 90 M Metcalf (Cambridge University Press,
1996) Foreword, pp. x-xvi [Detailed.]

Computer Standards & Interfaces, 18 (North Holland/Elsevier, 1996) whole
issue. [Articles devoted to Fortran 90 contain further background infor-
mation.]

Imperative Programming Languages Handbook of Programming Lan-
guages, Vol II: Imperative Programming Languages P H Salus, ed (Mac-
Millan, 1998) Part I: Fortran, W S Brainerd

Onward to Fortran 2008
Journal of Computer Science and Technology 11:1 M Metcalf The Seven

Ages of Fortran (April 2011)
Encyclopedia of Parallel Computing D Padua, ed (Springer, 2011): Fortran

90 and its successors, M Metcalf
Modern Fortran Explained M Metcalf, J Reid and M Cohen (Oxford Univer-

sity Press, 2011) Chapter 1, pp. 4-7.

	INTRODUCTION
	Edsger W. Dijkstra (1968)
	Go To Statement Considered Harmful
	Informing the Public
	Public Review and Comment Processing
	Repair and Modification of the BSR X 3.9 Document
	Informing the Public – Continued
	Future Projections
	June 1977: X3 acceptance of our recommendation to proceed with the final processing of the revised standard
	October 1977: X3J3 consider and respond to those issues that may arise from the letter ballot and final public review, if any
	November 1977: International Standards Organization TC97/SC5 Fortran working group having requested and received document X3J3/90, meeting to consider its adoption as revision of ISO R-1539 Fortran. The AFNOR organization has begun the translation of ...
	November 1982: Publication of ANS X3.9-1982 Fortran

	Conclusion

	Second Edition, Volume 2, of Fortran Numerical Recipes CAMBRIDGE UNIVERSITY PRESS, 1996
	Michael Metcalf
	Sipping coffee on a sunbaked terrace can be surprisingly productive. One of the Numerical Recipes authors and I were each lecturing at the International Center for Theoretical Physics in Trieste, Italy, he on numerical analysis and I on Fortran 90. Th...
	The Birth of a Standard
	Conflict
	Resolution
	Fortran 90
	Fortran Evolution
	Conclusion

	Abstract
	Language evolution
	1. The First Age: Origins
	2. The Second Age: Fortran 66
	3. The Third Age: Fortran 77
	4. The Fourth Age: The battle for Fortran 90
	5. The Fifth Age: A minor revision, Fortran 95
	6. The Sixth Age: Fortran 2003
	Related standards
	7. The Seventh Age: Fortran 2008

	Fortran concepts
	The status of Fortran
	1. Challenges from other languages
	2. The international Fortran community

